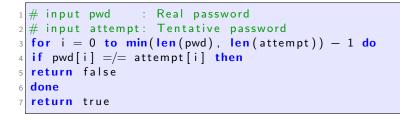
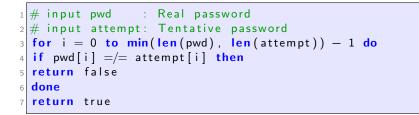


ICECCS

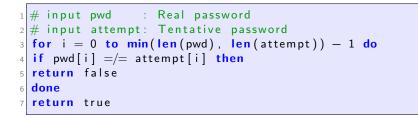
June 15, 2023 Toulouse, France

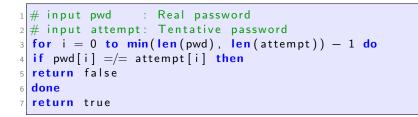

Expiring opacity problems in parametric timed automata


Étienne André¹, Engel Lefaucheux², Dylan Marinho²

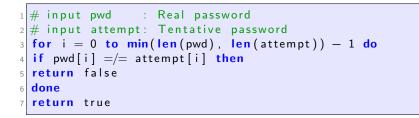
¹ Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France
² Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015) and the ANR research program BisoUS (ANR-22-CE48-0012).

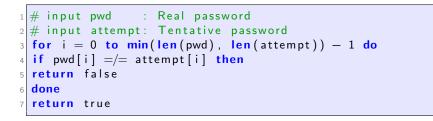



pwd	с	h	0	с	0	1	а	t	i	n	е
attempt	с	h	a	s	s	0	u	1	е	t	

Execution time:



Execution time: ϵ



Execution time: $\epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

Context: timing attacks

 Principle: deduce private information from timing data (execution time)

Issues:

- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

 \rightsquigarrow Non-trivial problem

Informal problems

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the internal behavior, whatever (for all) execution times?

Informal problems

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the internal behavior, whatever (for all) execution times?

Further question: can we also tune internal timing constants to make the system resisting to timing attacks?

Synthesis problem: Execution-time opacity synthesis

Exhibit execution times and internal timing constants for which it is not possible to infer information on the internal behavior

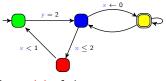
Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

Outline

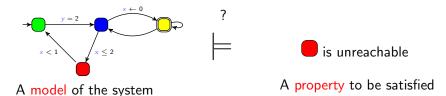

Preliminaries: ET-opacity problems in timed automata Timed model checking and timed automata Execution-Time Opacity Problems

Contribution: Expiring-ET-Opacity Problems

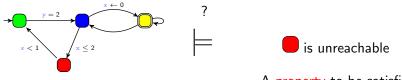
Results

Perspectives

Timed model checking



A model of the system


A property to be satisfied

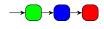
Timed model checking

Question: does the model of the system satisfy the property?

Timed model checking

A model of the system

A property to be satisfied


Question: does the model of the system satisfy the property?

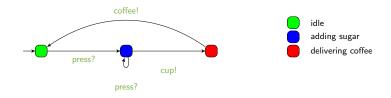
Yes

No


Counterexample

Finite state automaton (sets of locations)

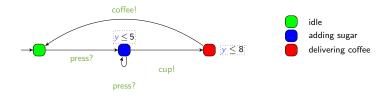
[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions)

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8

Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

Real-valued variables evolving linearly at the same rate


[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8

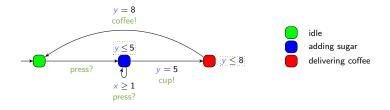
 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [AD94]

- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants

Features

Location invariant: property to be verified to stay at a location

[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [AD94]

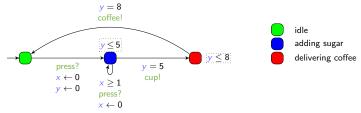
- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location

Transition guard: property to be verified to enable a transition

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards

Features

- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition

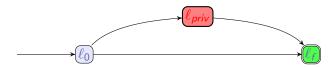
Clock reset: some of the clocks can be set to 0 along transitions

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8

Outline

Preliminaries: ET-opacity problems in timed automata Timed model checking and timed automata Execution-Time Opacity Problems

Contribution: Expiring-ET-Opacity Problems

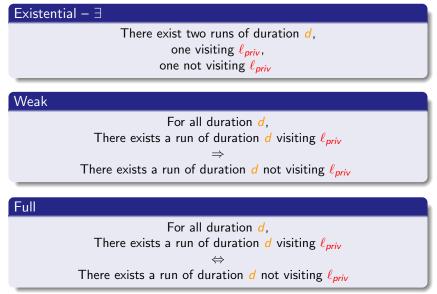

Results

Perspectives

Formalization

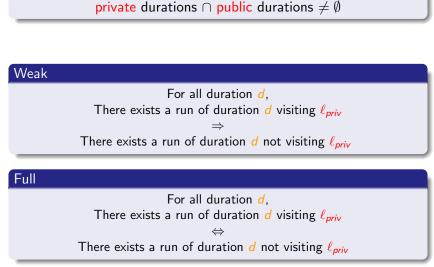
Hypotheses:

- A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}


Definition (execution-time opacity)

The system is **ET-opaque** for a duration d if there exist two runs to ℓ_f of duration d

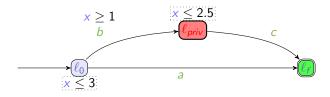
- 1. one visiting ℓ_{priv}
- 2. one *not* visiting ℓ_{priv}

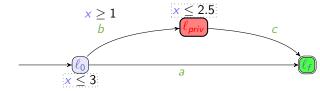

[[]AS19] Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7

Three levels of ET-opacity

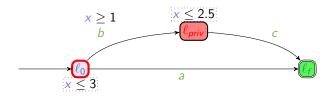
Three levels of ET-opacity

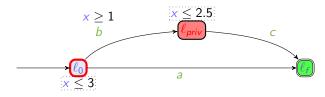
Existential $-\exists$


Three levels of ET-opacity



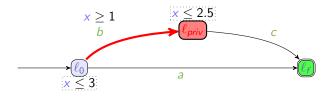
Weak


private durations \subseteq public durations

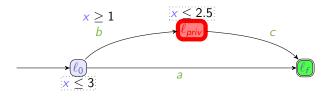

• There exist (at least) two runs of duration d = 2:

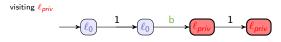
• There exist (at least) two runs of duration d = 2:

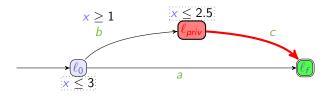
visiting *l*priv

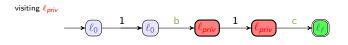


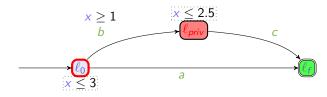
• There exist (at least) two runs of duration d = 2:

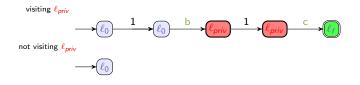


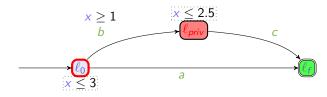

• There exist (at least) two runs of duration d = 2:

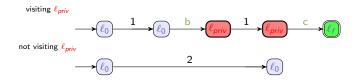


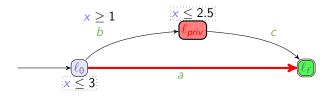


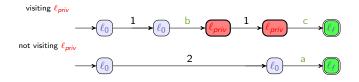

• There exist (at least) two runs of duration d = 2:

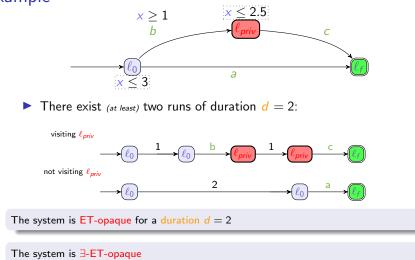


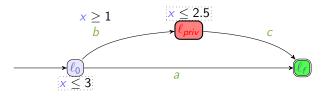

• There exist (at least) two runs of duration d = 2:

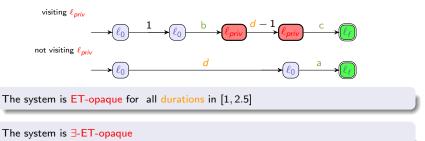


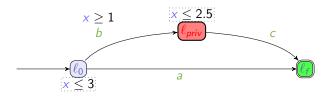

• There exist (at least) two runs of duration d = 2:

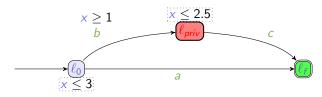



• There exist (at least) two runs of duration d = 2:



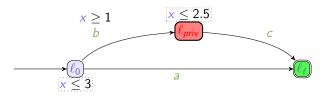

• There exist (at least) two runs of duration d = 2:




► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]:

• There exist $(at \ least)$ two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

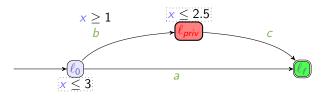


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

private execution times are [1, 2.5]
 public execution times are [0, 3]

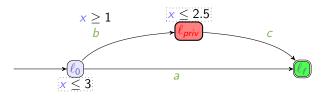


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- private durations \subseteq public durations

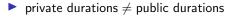

► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

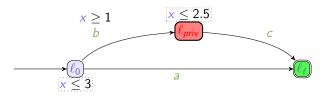
The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- private durations \subseteq public durations

The system is weakly ET-opaque


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]


The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque

► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque

• private durations \neq public durations

The system is not fully ET-opaque

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems Expiring-ET-opacity problems in TAs Expiring-ET-opacity problems in PTAs

Results

Perspectives

Expiring ET-opacity

How to deal with outdated secrets?
 e.g., cache values, status of the memory, ...

Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value) $[Amm+21]^a$

^a[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. "Bounded opacity for timed systems". In: *Journal of Information Security and Applications* 61 (Sept. 2021), pp. 1–13. DOI: 10.1016/j.jisa.2021.102926

Expiring ET-opacity

Knowing an expired secret is equivalent to not knowing a secret

	Secret runs	Non-secret runs	
ET-opacity	Runs visiting the private lo-	Runs not visiting the pri-	
	cation	vate location	
	(= private runs)	(= public runs)	
expiring-ET-opacity	Private runs with ℓ_{priv} visit	(i) Public runs and	
expiring-L r-opacity	$\leq \Delta$ before the system	(ii) Private runs with ℓ_{priv}	
	completion	visit > Δ before the system	
		completion	

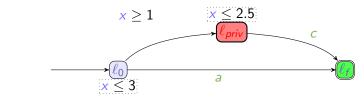
Two levels of

ET-opacity

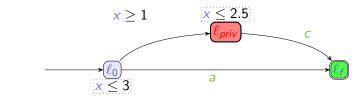
private durations = public durations

Existential– \exists expiring version is left as future work.

Two levels of expiring ET-opacity


Weak expiring

secret durations \subseteq non-secret durations


Full expiring

secret durations = non-secret durations

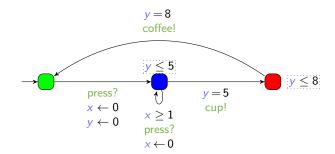
Existential– \exists expiring version is left as future work.

ET-opacity notion	Secret	Non secret	Answer
∃ weak full	[1,2.5]	[0,3]	\checkmark \checkmark \times
$egin{array}{ccc} \exists \mbox{-exp.} & & \\ \Delta = 1 & & \mbox{weak-exp.} & \\ & & \mbox{full-exp.} \end{array}$	[1,2.5]	$(2, 2.5] \cup [0, 3]$	 \times

ET-opacity notion		Secret	Non secret	Answer
	Ξ			
	weak	[1, 2.5]	[0, 3]	
	full			×
	∃-exp.			
$\Delta = 1$	weak-exp.	[1, 2.5]	$(2, 2.5] \cup [0, 3]$	
	full-exp.			×
	∃-exp.			
$\Delta = 1.25$	weak-exp.	[1, 2.5]	<mark>(2.25, 2.5]</mark> ∪ [0, 3]	
	full-exp.			×

Outline

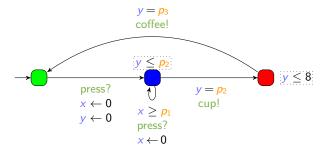
Preliminaries: ET-opacity problems in timed automata


Contribution: Expiring-ET-Opacity Problems Expiring-ET-opacity problems in TAs Expiring-ET-opacity problems in PTAs

Results

Perspectives

Timed Automaton (PTA)

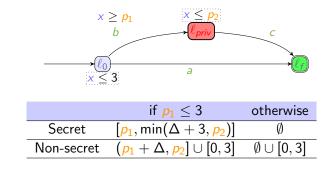

Timed automaton (sets of locations, actions and clocks)

[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242

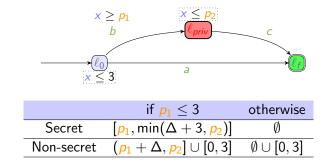
Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters [AHV93]
 - Unknown constants compared to a clock in guards and invariants

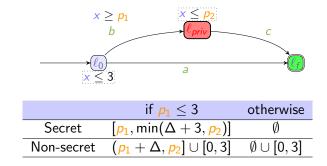
[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242

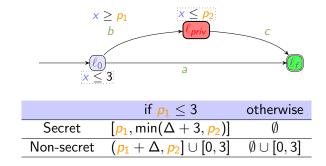

Two classes of parametric problems

$(p+\Delta)$ -Emptiness problem


Decide whether the set of parameter valuations v and Δ s.t. v(A) is expiring-ET-opaque is empty

$(p+\Delta)$ -Synthesis problem


Synthesize the set of parameter valuations v and Δ s.t. v(A) is expiring-ET-opaque


ET-opacity notion	(p+ Δ)-Emptiness	(p+ Δ)-Synthesis
weak		
full		

ET-opacity notion	(p+ Δ)-Emptiness	(p+ Δ)-Synthesis
weak	×(∍v)	
full	×(∃v)	

ET-opacity notion	(p+ Δ)-Emptiness	(p+ Δ)-Synthesis	
weak	×(∃v)	$\begin{array}{cccc} p_1 > p_2 & \lor & p_1 > 3 & \lor & \Delta = 0 \\ & \lor & p_2 \le 3 & \lor & p_1 + \Delta <= 3 \end{array}$	
full	×(∃v)		

ET-opacity notion	(p+ Δ)-Emptiness	(p+ Δ)-Synthesis		
weak	×(∃v)	$\begin{array}{cccc} p_1 > p_2 & \lor & p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$		
full	×(∃v)	$p_1=0 \wedge ((\Delta \leq 3 \wedge 3 \leq p_2 \leq \Delta + 3)) \ \vee (p_2=3))$		

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

Summary of the results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ -emptiness Δ -synthesis	ТА		√ ?
$(p + \Delta)$ -emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	PTA	×	×
$(p + \Delta)$ -synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	ΡΤΑ	×	×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) $[\mathsf{BL09}]$

[[]BL09] Laura Bozzelli and Salvatore La Torre. "Decision problems for lower/upper bound parametric timed automata". In: Formal Methods in System Design 35.2 (2009), pp. 121–151. DOI: 10.1007/s10703-009-0074-0

Summary of the results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ -emptiness Δ -synthesis	ТА		√ ?
$(p + \Delta)$ -emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	PTA	×	×
$(p + \Delta)$ -synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	ΡΤΑ	×	×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) $[\mathsf{BL09}]$

Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in paper)

[[]BL09] Laura Bozzelli and Salvatore La Torre. "Decision problems for lower/upper bound parametric timed automata". In: Formal Methods in System Design 35.2 (2009), pp. 121–151. DOI: 10.1007/s10703-009-0074-0

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

Perspectives

Theory

- ► ∃-expiring-ET-opacity
- Some restricted problems remain open
 - e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

Promising subclass: U-PTAs (only upper-bound parameters)

Perspectives

Algorithmic and implementation

- Computation of expiring bounds (and parameters) ensuring expiring-ET-opacity
- Automatic translation of programs to timed automata
- Repairing a non ET-opaque system

References I

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8.

 [AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242.

[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. "Bounded opacity for timed systems". In: Journal of Information Security and Applications 61 (Sept. 2021), pp. 1–13. DOI: 10.1016/j.jisa.2021.102926.

References II

[AS19]

- Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: *ATVA* (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7.
- [BL09] Laura Bozzelli and Salvatore La Torre. "Decision problems for lower/upper bound parametric timed automata". In: Formal Methods in System Design 35.2 (2009), pp. 121–151. DOI: 10.1007/s10703-009-0074-0.