
ICECCS

June 15, 2023
Toulouse, France

Expiring opacity problems in parametric
timed automata

Étienne André1, Engel Lefaucheux2, Dylan Marinho2

1 Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse,
France

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015)
and the ANR research program BisoUS (ANR-22-CE48-0012).

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time: ϵ

+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time: ϵ+ ϵ

+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h o c o l a t i n e

attempt c h a s s o u l e t

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

2 / 29

Context: timing attacks

▶ Principle: deduce private information from timing data
(execution time)

Issues:

▶ May depend on the implementation (or, even worse, be
introduced by the compiler)

▶ A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

⇝ Non-trivial problem

3 / 29

Informal problems

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the
internal behavior, whatever (for all) execution times?

Further question: can we also tune internal timing constants to
make the system resisting to timing attacks?

Synthesis problem: Execution-time opacity synthesis

Exhibit execution times and internal timing constants for which it
is not possible to infer information on the internal behavior

4 / 29

Informal problems

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the
internal behavior, whatever (for all) execution times?

Further question: can we also tune internal timing constants to
make the system resisting to timing attacks?

Synthesis problem: Execution-time opacity synthesis

Exhibit execution times and internal timing constants for which it
is not possible to infer information on the internal behavior

4 / 29

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

5 / 29

Outline

Preliminaries: ET-opacity problems in timed automata
Timed model checking and timed automata
Execution-Time Opacity Problems

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

6 / 29

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=

is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

7 / 29

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|= is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

7 / 29

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|= is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

Counterexample

7 / 29

Timed automaton (TA)
▶ Finite state automaton (sets of locations)

and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
▶ Finite state automaton (sets of locations and actions)

augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

press?

x ← 0
y ← 0

y = 5

cup!

x ≥ 1

press?

x ← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

press?

x ← 0
y ← 0

y = 5

cup!

x ≥ 1

press?

x ← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location

▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

y ≤ 5

y ≤ 8
press?

x ← 0
y ← 0

y = 5

cup!

x ≥ 1

press?

x ← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition

▶ Clock reset: some of the clocks can be set to 0 along
transitions

y ≤ 5

y ≤ 8
press?

x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?

x ← 0

y = 8
coffee!

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

y ≤ 5

y ≤ 8
press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8

8 / 29

https://doi.org/10.1016/0304-3975(94)90010-8

Outline

Preliminaries: ET-opacity problems in timed automata
Timed model checking and timed automata
Execution-Time Opacity Problems

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

9 / 29

Formalization

Hypotheses: [AS19]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0

ℓpriv

ℓf

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs
to ℓf of duration d

1. one visiting ℓpriv

2. one not visiting ℓpriv

[AS19] Étienne André and Jun Sun. “Parametric Timed Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture
Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. doi: 10.1007/978-3-030-31784-3_7

10 / 29

https://doi.org/10.1007/978-3-030-31784-3_7

Three levels of ET-opacity

Existential – ∃
There exist two runs of duration d ,

one visiting ℓpriv ,
one not visiting ℓpriv

Weak

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

11 / 29

Three levels of ET-opacity

Existential – ∃
private durations ∩ public durations ̸= ∅

Weak

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

11 / 29

Three levels of ET-opacity

Existential – ∃
private durations ∩ public durations ̸= ∅

Weak

private durations ⊆ public durations

Full

private durations = public durations

11 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0

ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0

ℓpriv ℓpriv ℓf

1

b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv

ℓpriv ℓf

1 b

1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv

ℓf

1 b 1

c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0

ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0

ℓf

2

a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ET-opaque for a duration d = 2

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

12 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b d − 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
d a

The system is ET-opaque for all durations in [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

13 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

13 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

14 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]
▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

14 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]
▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

14 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]
▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

14 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations
d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]
▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

14 / 29

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

15 / 29

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems
Expiring-ET-opacity problems in TAs
Expiring-ET-opacity problems in PTAs

Results

Perspectives

16 / 29

Expiring ET-opacity

▶ How to deal with outdated secrets?
e. g., cache values, status of the memory, ...

Idea

The secret can expire: beyond a certain duration, knowing the
secret is useless to the attacker (e. g., a cache value) [Amm+21]

a

a
[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. “Bounded opacity for timed

systems”. In: Journal of Information Security and Applications 61 (Sept. 2021), pp. 1–13. doi:
10.1016/j.jisa.2021.102926

17 / 29

https://doi.org/10.1016/j.jisa.2021.102926

Expiring ET-opacity

Knowing an expired secret is equivalent to not knowing a secret

Secret runs Non-secret runs

ET-opacity
Runs visiting the private lo-
cation

Runs not visiting the pri-
vate location

(= private runs) (= public runs)

expiring-ET-opacity
Private runs with ℓpriv visit
≤ ∆ before the system
completion

(i) Public runs and
(ii) Private runs with ℓpriv
visit > ∆ before the system
completion

18 / 29

Two levels of

expiring

ET-opacity

Weak

expiring

private durations ⊆ public durations

Full

expiring

private durations = public durations

Existential–∃ expiring version is left as future work.

19 / 29

Two levels of expiring ET-opacity

Weak expiring

secret durations ⊆ non-secret durations

Full expiring

secret durations = non-secret durations

Existential–∃ expiring version is left as future work.

19 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

20 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

20 / 29

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems
Expiring-ET-opacity problems in TAs
Expiring-ET-opacity problems in PTAs

Results

Perspectives

21 / 29

Parametric

Timed Automaton (PTA)

▶ Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters [AHV93]

▶ Unknown constants compared to a clock in guards and
invariants

y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y =5
cup!

x ≥ 1
press?
x← 0

y =8
coffee!

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California,
United States: ACM, 1993, pp. 592–601. doi: 10.1145/167088.167242

22 / 29

https://doi.org/10.1145/167088.167242

Parametric Timed Automaton (PTA)

▶ Timed automaton (sets of locations, actions and clocks)
augmented with a set P of parameters [AHV93]

▶ Unknown constants compared to a clock in guards and
invariants

y ≤ p2
y ≤ 8

press?
x ← 0
y ← 0

y = p2
cup!

x ≥ p1
press?
x← 0

y = p3
coffee!

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California,
United States: ACM, 1993, pp. 592–601. doi: 10.1145/167088.167242

22 / 29

https://doi.org/10.1145/167088.167242

Two classes of parametric problems

(p+∆)-Emptiness problem

Decide whether the set of parameter valuations v and ∆ s. t.
v(A) is expiring-ET-opaque is empty

(p+∆)-Synthesis problem

Synthesize the set of parameter valuations v and ∆ s. t.
v(A) is expiring-ET-opaque

23 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3, p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion (p+∆)-Emptiness (p+∆)-Synthesis

weak

p1 > p2 ∨ p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

full

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

24 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3, p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion (p+∆)-Emptiness (p+∆)-Synthesis

weak ×(∃v)

p1 > p2 ∨ p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

full ×(∃v)

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

24 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3, p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion (p+∆)-Emptiness (p+∆)-Synthesis

weak ×(∃v)
p1 > p2 ∨ p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3

full ×(∃v)

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

24 / 29

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3, p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion (p+∆)-Emptiness (p+∆)-Synthesis

weak ×(∃v)
p1 > p2 ∨ p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3

full ×(∃v)
p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)

∨(p2 = 3))

24 / 29

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

25 / 29

Summary of the results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness
L/U-PTA × ×

PTA × ×

(p +∆)-synthesis
L/U-PTA × ×

PTA × ×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) [BL09]

Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).

(see formal proofs in paper)

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/upper bound parametric timed
automata”. In: Formal Methods in System Design 35.2 (2009), pp. 121–151. doi: 10.1007/s10703-009-0074-0

26 / 29

https://doi.org/10.1007/s10703-009-0074-0

Summary of the results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness
L/U-PTA × ×

PTA × ×

(p +∆)-synthesis
L/U-PTA × ×

PTA × ×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) [BL09]

Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).

(see formal proofs in paper)

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/upper bound parametric timed
automata”. In: Formal Methods in System Design 35.2 (2009), pp. 121–151. doi: 10.1007/s10703-009-0074-0

26 / 29

https://doi.org/10.1007/s10703-009-0074-0

Outline

Preliminaries: ET-opacity problems in timed automata

Contribution: Expiring-ET-Opacity Problems

Results

Perspectives

27 / 29

Perspectives

Theory

▶ ∃-expiring-ET-opacity
▶ Some restricted problems remain open

e. g., PTA with one clock

▶ Study more restrictive sub-classes, with the hope to exhibit a
decidable one
Promising subclass: U-PTAs (only upper-bound parameters)

28 / 29

Perspectives

Algorithmic and implementation

▶ Computation of expiring bounds (and parameters) ensuring
expiring-ET-opacity

▶ Automatic translation of programs to timed automata

▶ Repairing a non ET-opaque system

29 / 29

References I

[AD94] Rajeev Alur and David L. Dill. “A theory of timed
automata”. In: Theoretical Computer Science 126.2
(Apr. 1994), pp. 183–235. doi:
10.1016/0304-3975(94)90010-8.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and
Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju,
David S. Johnson, and Alok Aggarwal. San Diego,
California, United States: ACM, 1993, pp. 592–601.
doi: 10.1145/167088.167242.

[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and
John Mullins. “Bounded opacity for timed systems”.
In: Journal of Information Security and Applications
61 (Sept. 2021), pp. 1–13. doi:
10.1016/j.jisa.2021.102926.

30 / 29

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1016/j.jisa.2021.102926

References II

[AS19] Étienne André and Jun Sun. “Parametric Timed
Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen,
Chih-Hong Cheng, and Javier Esparza. Vol. 11781.
Lecture Notes in Computer Science. Taipei, Taiwan:
Springer, 2019, pp. 115–130. doi:
10.1007/978-3-030-31784-3_7.

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision
problems for lower/upper bound parametric timed
automata”. In: Formal Methods in System Design
35.2 (2009), pp. 121–151. doi:
10.1007/s10703-009-0074-0.

31 / 29

https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/s10703-009-0074-0

	Introduction
	General context
	Problem

	Preliminaries: ET-opacity problems in timed automata
	Timed model checking and timed automata
	Execution-Time Opacity Problems

	Contribution: Expiring-ET-Opacity Problems
	Expiring-ET-opacity problems in TAs
	Expiring-ET-opacity problems in PTAs

	Results
	Perspectives
	References

