

PhD defense

October 3rd, 2023 Nancy, France

Theoretical and algorithmic contributions to the analysis of safety and security properties in timed systems under uncertainty

Dylan Marinho

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

- Reviewers: Patricia BOUYER-DECITRE Thierry JÉRON
- Examiners: Véronique CORTIER Thao DANG Frédéric HERBRETEAU Swen JACOBS

Supervisors

Étienne André Stephan Merz

Motivation

Real-time systems:

Not only the functional correctness but also the time to answer is important

Motivation

- Critical Real-time systems:
 - Not only the functional correctness but also the time to answer is important
 - Failures (in correctness or timing) may result in dramatic consequences

Motivation

- Critical Real-time systems:
 - Not only the functional correctness but also the time to answer is important
 - Failures (in correctness or timing) may result in dramatic consequences

General context: side-channel attacks

Threats to a system using non-algorithmic weaknesses

Conclusion

General context

Introduction

General context: side-channel attacks

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

General context

Introduction

General context: side-channel attacks

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

Example

Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

¹http://home.xnet.com/~warinner/pizzacites.html

General context

Introduction

General context: side-channel attacks

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

Example

Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

¹http://home.xnet.com/~warinner/pizzacites.html

```
Introduction
```

Conclusion

Timing attacks

A simple example of timing attack

```
1 # input pwd : Real password
2 # input attempt: Tentative password
3 for i = 0 to min(len(pwd), len(attempt)) - 1 do
4 if pwd[i] ≠ attempt[i] then
5 return false
6 done
7 return true
```

```
Introduction
```

Conclusion

Timing attacks

A simple example of timing attack

```
1 # input pwd : Real password
2 # input attempt: Tentative password
3 for i = 0 to min(len(pwd), len(attempt)) - 1 do
4 if pwd[i] ≠ attempt[i] then
5 return false
6 done
7 return true
```

pwd	с	h	i	С	k	е	n
attempt	с	h	е	е	S	е	

Execution time:

Preliminaries

Efficient verificatio

Conclusion

Timing attacks

A simple example of timing attack

Preliminaries

Efficient verificatio

Conclusion

Timing attacks

A simple example of timing attack

Execution time: $\epsilon + \epsilon$

Preliminaries

Efficient verifica

Conclusion

Timing attacks

A simple example of timing attack

Execution time: $\epsilon + \epsilon + \epsilon$

Preliminaries

Efficient verificatio

Conclusion

Timing attacks

A simple example of timing attack

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

 Principle: deduce private information from timing data (execution time)

Issues:

- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

 \rightsquigarrow Non-trivial problem

Introduction	Preliminaries	Efficient verification	ET-opacity 000000000000000000000000000000000000	Conclusion 0000
Timing attacks				
Detectio	n			

Need to detect timing-leak vulnerabilities

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees \rightarrow formal methods

Various methods:

- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees \rightarrow formal methods

Various methods:

- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

 Introduction
 Preliminaries
 Efficient verification
 ET-opacity
 Conclus

 Observed
 Obse

A specification "The program must be secure"

Conclusion

Methodology

Methodology

Introduction Preliminaries Efficient verification

ET-opacity

The methodology

Methodology

Inputs

Output

Outline

1. Preliminaries: Timed model checking

Inputs

Output

Outline

- 1. Preliminaries: Timed model checking
- 2. Contribution: Efficient verification (Manuscript, Part I)

Inputs

Output

Outline

- 1. Preliminaries: Timed model checking
- 2. Contribution: Efficient verification (Manuscript, Part I)
- 3. Contribution: Execution-time opacity (Manuscript, Part II)

Outline

Preliminaries: (Parametric) Timed model checking

Preliminaries

Efficient verification

Conclusion

Timed model checking and Timed automata

Outline

Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric time automata

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

Preliminaries

Efficient verification

Conclusion

Timed model checking and Timed automata

Timed model checking

A model of the system

Question: does the model of the system satisfy the property?

A model of the system

- Question: does the model of the system satisfy the property?

Finite state automaton (sets of locations)

T-opacity

Conclusion

[AD94]

Finite state automaton (sets of locations and actions)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 - Real-valued variables evolving linearly at the same rate

Timed model checking and Timed automata

Timed automaton (TA)

[AD94]

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants
- Features
 - Location invariant: property to be verified to stay at a location

Timed model checking and Timed automata

Timed automaton (TA)

Preliminaries

[AD94]

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

Timed model checking and Timed automata

Timed automaton (TA)

Preliminaries

[AD94]

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along transitions

Outline

Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric timed automata

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

Preliminaries 0000000000 Parametric timed model checking and Parametric timed automata

Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

[AHV93]

Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set *P* of parameters
 - Unknown constants compared to a clock in guards and invariants

[AHV93]

Counterexample

 Question: for what values of the parameters does the model of the system satisfy the property?
 Yes if...

Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)

Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)

ntroduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - ▶ a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

ntroduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

troduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

troduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

ntroduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

troduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

 Preliminaries
 Efficient verification

 00000
 0000000
 000000000

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

troduction Preliminaries Efficient verification

Conclusion

Parametric timed model checking and Parametric timed automata

- Parametric extension zone graph of TAs
- **Symbolic state**: a pair with
 - a location
 - an attached parametric zone: a set of valuations defined by conjunctions of constraints over clocks and parameters

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

Contribution: Efficient verification of PTA models

The verification of systems modeled by PTAs is difficult (undecidability, state-space explosion, ...)

Contribution: Efficient verification of PTA models

The verification of systems modeled by PTAs is difficult (undecidability, state-space explosion, ...)

Goal

- Efficient verification
- Reducing computation time
- Larger/more realistic case studies
- \Rightarrow Can we exhibit a more efficient algorithm?

Contribution: Efficient verification of PTA models

The verification of systems modeled by PTAs is difficult (undecidability, state-space explosion, ...)

Goal

- Efficient verification
- Reducing computation time
- Larger/more realistic case studies
- \Rightarrow Can we exhibit a more efficient algorithm?

Contributions

Benchmark library [TAP21]
 Zone merging algorithm [FORMATS22]

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata Merging Zones

Experiments & Results

Contribution: Execution-time opacity

Conclusion & Perspectives

State merging techniques were introduced:

► in TA [Dav05]

in PTA for the Inverse Method only [AFS13]

State merging techniques were introduced:

▶ in TA [Dav05]

in PTA for the Inverse Method only [AFS13]

 \rightarrow Contribution: Extension to reachability properties

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Conclusion

Merging Zones

Constructing the PZG with merging algorithm

Efficient verification

Conclusion

Merging Zones

Merging can make difference for termination!

PZG without any heuristic

 $y \le p$ $y \ge p$ $y \ge p$ $x \ge q$ $x \ge q$ x := 0

O0000000

Efficient verification

Conclusion

Merging Zones

Merging can make difference for termination! PZG with inclusion

 $y \le p$ $y \ge p$ $x \ge q$ $x \ge q$ x = 0

O0000000

Efficient verification

Conclusion

Merging Zones

Merging can make difference for termination! PZG with inclusion

 $y \le p$ $y \ge p$ $x \ge q$ $x \ge q$ x := 0

Preliminaries 00000000 Efficient verification

Conclusion

Merging Zones

Merging can make difference for termination! PZG with merging

Preliminaries 00000000 Efficient verification

Conclusion

Merging Zones

Merging can make difference for termination! PZG with merging

Efficient verification

ET-opacity

Conclusion

Merging Zones

Preservation of properties

Theorem

Merging states while computing the PZG is correct for reachability properties

Efficient verification

ET-opacity

Merging Zones

Preservation of properties

Theorem

Merging states while computing the PZG is correct for reachability properties

But

- The test of convexity is (very) expensive
- The merge order can have consequences on the efficiency
 - Performing an exhaustive zone merging is not efficient

Merging Zones

Preservation of properties

Theorem

Merging states while computing the PZG is correct for reachability properties

But

- The test of convexity is (very) expensive
- The merge order can have consequences on the efficiency
 - Performing an exhaustive zone merging is not efficient

Implementation

In a model-checker with heuristics

Merging Zones

Heuristics for merging

What to merge with what? Queue, Visited, Ordered Restart after merge?

When to update the state space?

- After each merge
- After exploring the candidates list
- After exploring a level

How to update the state space?

- Reconstruction of the state-space
- 🕨 In situ

Preliminaries

Efficient verification

Conclusion

Merging Zones

Illustration of the merging options

🗆 visited

🗌 in the queue

being processed

] after merge

Preliminaries

Efficient verification

Conclusion

Merging Zones

Illustration of the merging options

- ☐ visited
 ☐ in the queue
- being processed
- after merge

Merge with Queue

Preliminaries

Efficient verification

Conclusion

Merging Zones

Illustration of the merging options

visited
 in the queue
 being processed
 after merge

Merge with Queue

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- visited
- 🗌 in the queue
- being processed
- 🗆 after merge

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- 🗆 visited
- 🗌 in the queue
- being processed
- 🗆 after merge

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- 🗌 visited
- 🗌 in the queue
- being processed
- 🗆 after merge

Merge with Queue

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- 🗌 visited
- 🗌 in the queue
- being processed
- 🗌 after merge

Merge with Queue

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- visited
 in the queue
 being processed
- 🗌 after merge

Merge with Queue

Efficient verification 00000000000000

Merging Zones

Illustration of the merging options

- visited in the queue being processed
- after merge

Merge with Queue \mathbf{C}_0

Preliminaries

Efficient verification

ET-opacity

Conclusion

Merging Zones

Illustration of the merging options

- visited
 in the queue
 being processed
- 🗌 after merge

Merge with Queue

Efficient verification

Experiments & Results

Outline

Contribution: Efficient verification in Parametric Timed Automata Experiments & Results

Experiments

Comparison of all the combinations of heuristics

- Use of the IMITATOR library, restricted to reachability-based properties [TAP21]:
 - 124 executions (model, reachability property)
 - 42 executions perform at least one merge

[[]TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: TAP (2021). LNCS. Springer, 2021

Experiments & Results

The IMITATOR benchmark library Overview of Chapter 4 of the manuscript

Library	Size				
Vers.	Bench.	Models	Prop.		
1.0	34	80	122		
2.0	56	119	216		

Contribution

- More benchmarks (publications, industrial collaborations, ...)
- Inclusion of liveness properties, unsolvable benchmarks
- Export to JANI
- Semantic information (computation time, expected result...)
- Published as long-term access

imitator.fr/library2
 DOI 10.5281/zenodo.4730980

[[]TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: *TAP* (2021). LNCS. Springer, 2021

Conclusion

Experiments & Results

Comparing merging heuristics: Results

		Nomerge	RVMr	OQM
Time	# wins	24	22	42
	Avg (s)	10.0	4.56	3.77
	Avg (merge) (s)	18.8	5.57	3.63
	Avg (no merge) (s)	3.83	3.85	3.88
	Median (s)	1.39	1.14	1.12
States	# wins	0	37	16
	Avg	11443.08	11064.37	11120.79
	Avg (merge)	1512.02	592.31	729.33
	Median	2389.5	604.5	905.0

Gain of 62% of the average computation time

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

Conclusion 0000

Contribution: Execution-time opacity

How to detect timing-leak vulnerabilities?

Conclusion

Introduction

Contribution: Execution-time opacity

How to detect timing-leak vulnerabilities?

Goal

- Propose a formalization of the private information and attacker model
- Check whether a model is secure or not

 Conclusion

Introduction

Contribution: Execution-time opacity

How to detect timing-leak vulnerabilities?

Goal

- Propose a formalization of the private information and attacker model
- Check whether a model is secure or not

Contributions

- ET-opacity definition, decidability results and experiments [TOSEM22]
- Expiring ET-opacity definition and decidability results [ICECCS23]
- Untimed control

[FTSCS22]

Our attacker model

Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time

Introduction

Our attacker model

Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time

Attacker goal

- Wants to deduce some private information based on these observations
 - \rightarrow visit of a private location

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

ET-opacity problems in TAs

ET-opacity problems in PTAs Expiring ET-opacity problems Untimed control

Conclusion & Perspectives

Hypotheses:

[AS19][TOSEM22]

- A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

Hypotheses:

[AS19][TOSEM22]

- A start location ℓ_0 and an end location ℓ_{f}
- A special private location ℓ_{priv}

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs to ℓ_f of duration d

- 1. one visiting ℓ_{priv}
- 2. one *not* visiting ℓ_{priv}

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)

There exist a duration d and two runs of duration d, one visiting ℓ_{priv} ,

one not visiting ℓ_{priv} ,

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (\exists)

private durations \cap public durations $\neq \emptyset$

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (\exists)

private durations \cap public durations $\neq \emptyset$

Weak

For all durations d, There exists a run of duration d visiting ℓ_{priv} \Rightarrow

There exists a run of duration d not visiting $\ell_{\textit{priv}}$

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)

private durations \cap public durations $\neq \emptyset$

ET-opacity

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (\exists)

private durations \cap public durations $\neq \emptyset$

Weak

private durations \subseteq public durations

O0000000

Efficient verification

ET-opacity

Conclusion

ET-opacity problems in TAs

Introduction 000000	Preliminaries 000000000	Efficient verification	ET-opacity 000000000000000000000000000000000000	Conclusion 0000
ET-opacity problem	is in TAs			
Example				

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist (at least) two runs of duration d = 2:

visiting ℓ_{priv}

• There exist (at least) two runs of duration d = 2:

visiting ℓ_{priv}

$$\longrightarrow \ell_0 \xrightarrow{1} \ell_0$$

• There exist $(at \ least)$ two runs of duration d = 2:

visiting $\ell_{\textit{priv}}$

Introduction	Preliminaries	Efficient verification	ET-opacity	Conclusion
000000	000000000		000000000000000000000000000000000000	0000
ET-opacity problems	in TAs			

• There exist (at least) two runs of duration d = 2:

Introduction 000000	Preliminaries	Efficient verification	ET-opacity 000000000000000000000000000000000000	Conclusion 0000
ET-opacity problems	in TAs			

• There exist (at least) two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

The system is ∃-ET-opaque

The system is \exists -ET-opaque

The system is ∃-ET-opaque

▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

 private durations are [1, 2.5] public durations are [0, 3]

▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is \exists -ET-opaque

private durations are [1, 2.5] public durations are [0, 3]

• private durations \subseteq public durations

The system is weakly ET-opaque

• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is \exists -ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- private durations \subseteq public durations

The system is weakly ET-opaque

• private durations \neq public durations

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque

• private durations \neq public durations

The system is not fully ET-opaque

ET-opacity problems in PTAs

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

ET-opacity problems in TAs ET-opacity problems in PTAs Expiring ET-opacity problems Untimed control

Conclusion & Perspectives

Preliminarie 00000000 Efficient verification

ET-opacity

Conclusion

ET-opacity problems in PTAs

Preliminarie 00000000 Efficient verification

ET-opacity

Conclusion

ET-opacity problems in PTAs

Preliminarie 00000000 Efficient verification

ET-opacity

Conclusion

ET-opacity problems in PTAs

Introduction Preliminaries Efficient verification eT-opacity

ET-opacity

Conclusion

ET-opacity problems in PTAs

ET-opacity notion	Private	Public	Answer
$p_1 =$	$1 \wedge \mathbf{p}_2 = 2$	2.5	
Ξ			
weak	[1, 2.5]	[0, 3]	
full			×

roduction Preliminaries Efficient

Efficient verification

ET-opacity

Conclusion

ET-opacity problems in PTAs

ET-opacity notion	Private	Public	Answer
$p_1 =$	$1 \wedge \mathbf{p}_2 = 2$	2.5	
Ξ			
weak	[1, 2.5]	[0, 3]	
full			×
p ₁ =	$= 0 \wedge \mathbf{p}_2 =$	3	
Ξ			
weak	[0, 3]	[0, 3]	
full			

Preliminaries 00000000 fficient verification

ET-opacity

Conclusion

ET-opacity problems in PTAs

Two classes of parametric problems

p-Emptiness problem

Decide the emptiness of the set of parameter valuations v s.t. $v(\mathcal{P})$ is ET-opaque

p-Synthesis problem

Synthesize the set of parameter valuations v s. t. $v(\mathcal{P})$ is ET-opaque

Introduction 000000	Preliminaries	Efficient verification	ET-opacity	Conclusion 0000
ET-opacity proble	ems in PTAs			

ET-opacity notion	Э	Weak	Full
p-Emptiness			
p-Synthesis			

Introduction 000000	Preliminaries	Efficient verification	ET-opacity	Conclusion
ET-opacity proble	ems in PTAs			

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis			

Introduction 000000	Preliminaries	Efficient verification	ET-opacity	Conclusion
ET-opacity proble	ems in PTAs			

ET-opacity notion	Э	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \leq p_1 \leq 3$		
	$\land p_1 \leq p_2$		

 Introduction
 Preliminaries
 Efficient verification
 ET-opacity
 Conclusic

 ET-opacity problems in PTAs
 Conclusion
 Conclusion<

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \le p_1 \le 3$	$0 \leq \mathbf{p_1} \wedge \mathbf{p_2} \leq 3$	
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	P2	P2	
	p 1	p1	

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \leq \mathbf{p}_1 \leq 3$	$0 \leq p_1 \wedge p_2 \leq 3$	$\mathbf{p_1}=0\wedge\mathbf{p_2}=3$
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	p2		p2

ET-opacity

Conclusion

ET-opacity problems in PTAs

Decidability results for ET-opacity

		∃-ET-opaque	weakly ET-	fully ET-
			opaque	opaque
Decision	ТА	\checkmark	\checkmark	\checkmark
<i>p</i> -emptiness	L/U-PTA	\checkmark	×	×
	PTA	×	×	×
<i>p</i> -synthesis	L/U-PTA	×	×	×
	ΡΤΑ	×	×	×

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

 Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 7)

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

ET-opacity

Conclusion

ET-opacity problems in PTAs

Decidability results for ET-opacity

		∃-ET-opaque	weakly ET-	fully ET-
			opaque	opaque
Decision	ТА	\checkmark	\checkmark	\checkmark
<i>p</i> -emptiness	L/U-PTA	\checkmark	×	×
	PTA	×	×	×
<i>p</i> -synthesis	L/U-PTA	×	×	×
	ΡΤΑ	×	×	×

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

 Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 7)

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

ET-opacity

Conclusion

ET-opacity problems in PTAs

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of \exists -ET-opacity *p*-emptiness)

Given \mathcal{P} , the mere existence of a parameter valuation v s. t. $v(\mathcal{P})$ \exists -ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

Remark: L/U-PTA is a decidable subclass

Expiring ET-opacity problems

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

ET-opacity problems in TAs ET-opacity problems in PTAs Expiring ET-opacity problems Untimed control

Conclusion & Perspectives

Expiring ET-opacity

How to deal with outdated secrets?
 e. g., cache values, status of the memory, ...

Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value) [Amm+21]
ET-opacity

Expiring ET-opacity problems

Expiring ET-opacity

Assumption

Knowing an expired secret is equivalent to not knowing a secret

	Secret runs	Non-secret runs	
ET opacity	Runs visiting the private lo-	Runs not visiting the pri-	
	cation	vate location	
	(= private runs)	(= public runs)	
ovniring ET oppoity	Private runs with ℓ_{priv} visit	(i) Public runs and	
expiring-E r-opacity	$\leq \Delta$ before the system	(ii) Private runs with ℓ_{priv}	
	completion	visit $> \Delta$ before the system	
		completion	

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). To appear. Springer, 2023

Existential (\exists)

private durations \cap public durations $\neq \emptyset$

private durations \subseteq public durations

Full

private durations = public durations

Introduction 000000 fficient verification

ET-opacity

Conclusion

Expiring ET-opacity problems

Three levels of expiring ET-opacity

Existential (\exists) expiring

secret durations \cap non-secret durations $\neq \emptyset$

Weak expiring

secret durations \subseteq non-secret durations

Full expiring

secret durations = non-secret durations

troduction 00000

0000000

Efficient verificat

ET-opacity

Conclusion

Expiring ET-opacity problems

ET-opac	ity notion	Secret	Non-secret	Answer
	E	[1 2 5]	[0 2]	
full		[1, 2.5]	[0, 5]	√ ×
$\Delta = 1$	∃-exp. weak-exp.	[1, 2.5]	(2,2.5] ∪ [0,3]	
	full-exp.			×

Introduction 000000 Preliminarie

Efficient verificatio

ET-opacity

Conclusion

Expiring ET-opacity problems

ET-opaci	ty notion	Secret	Non-secret	Answer
	Э			\checkmark
	weak	[1, 2.5]	[0, 3]	
	full			×
$\Delta = 1$	∃-exp.	[1, 2.5]	(2,2.5]∪[0,3]	\checkmark
	weak-exp.			
	full-exp.			×
$\Delta = 1.25$	∃-exp.	[1, 2.5]	(2.25, 2.5] ∪ [0, 3]	
	weak-exp.			
	full-exp.			×

Introduction Preliminaries Efficient verif

ET-opacity

Conclusion

Expiring ET-opacity problems

	$if \ p_1 \leq 3$	otherwise
Secret	$[\mathbf{p}_1, min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness		
(p+ Δ)-Synthesis		

Introduction Preliminaries Efficient verification

ET-opacity

Conclusion

Expiring ET-opacity problems

	$if \ p_1 \leq 3$	otherwise
Secret	$[\mathbf{p}_1, min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness	×(∃v)	×(∃v)
(p+ Δ)-Synthesis		

Introduction Preliminaries Efficient ver

ET-opacity

Conclusion

Expiring ET-opacity problems

	$if \ p_1 \leq 3$	otherwise
Secret	$[\mathbf{p}_1, min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness	×(∃v)	×(∃v)
(p+ Δ)-Synthesis	$\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$	

Introduction Preliminaries Efficient veri

tion ET-opacity

Conclusion

Expiring ET-opacity problems

	$if \ p_1 \leq 3$	otherwise
Secret	$[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full	
(p+∆)-Emptiness	×(∃v)	×(∃v)	
(p+ Δ)-Synthesis	$\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$	$\mathbf{p}_1 = 0 \wedge ((\Delta \leq 3 \land 3 \leq \mathbf{p}_2 \leq \Delta + 3) \ \lor (\mathbf{p}_2 = 3))$	

Introduction 000000 ET-opacity

Conclusion

Expiring ET-opacity problems

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ-emptiness Δ-synthesis	ТА		√ ?
$(n \perp \Lambda)$ emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	PTA	×	×
$(n \perp \Lambda)$ synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	PTA	×	×

∃-expiring ET-opacity was left as a future work.

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). To appear. Springer, 2023

Introduction 000000 ET-opacity

Conclusion

Expiring ET-opacity problems

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ-emptiness Δ-synthesis	ТА		√ ?
$(n \perp \Lambda)$ emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	PTA	×	×
$(n \perp \Lambda)$ synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	PTA	×	×

∃-expiring ET-opacity was left as a future work.

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 8)

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). To appear. Springer, 2023

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

ET-opacity problems in TAs ET-opacity problems in PTAs Expiring ET-opacity problems Untimed control

Conclusion & Perspectives

Introduction	Preliminaries	Efficient verification	ET-opacity	Conclusion	
000000	000000000		000000000000000000000000000	0000	
Untimed control					

Untimed control

Overview of Chapter 9 of the manuscript

▶ Restrict the behavior of the system to ensure ET-opacity
▶ Development of an open-source tool strategFTO (≈ 1200 lines of code, Java)

Enumeration of transition sets

[[]FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: *FTSCS* (2022). ACM, 2022

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

ET-opacity

Conclusion

E ((' - '		r•	· • • • •
Efficient	vern	rica:	tion

► A new benchmark library (119 models, 216 properties) [TAP21]

Zone merging algorithm for PTA verification

[FORMATS22]

Execution-time opacity	
Formalization and decidability results of ET-opacity	[TOSEM22]
Extension with secrets with expiration date	[ICECCS23]
Untimed control, implementation of strategFTO	[FTSCS22]

Perspectives

Merging states in PZG

- Merge more than 2 states, "best" merge
- Compatibility of merging and liveness properties

Execution-time opacity

- Extension of the definition to another formalism
- Automatic translation of programs to PTAs
 - \rightarrow Preliminary translation with Petri nets including cache system

Other kind of parameters

- Parametric systems: probabilities, costs
- Parameterized systems: number of components

	tion
)

Preliminaries

Efficient verification

Conclusion

Publications

[FORMATS22]	Étienne André, Dylan Marinho, Laure Petrucci, and Jaco van de Pol. "Efficient Convex Zone Merging in Parametric Timed Automata". In: <i>FORMATS</i> (2022). LNCS. Springer, 2022.
[FTSCS22]	Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: <i>FTSCS</i> (2022). ACM, 2022.
[ICECCS23]	Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). To appear. Springer, 2023.
[TAP21]	Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: <i>TAP</i> (2021). LNCS. Springer, 2021.
[TICSA23]	Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun. "Configuring Timing Parameters to Ensure Execution-Time Opacity in Timed Automata". In: <i>TICSA</i> . 2023.
[TOSEM22]	Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM 31 (2022).

Conclusion

References I

[AD94]

Rajeev Alur and David L. Dill. "A theory of timed automata". In: TCS 126 (Apr. 1994). [AFS13] Étienne André, Laurent Fribourg, and Romain Soulat. "Merge and Conquer: State Merging in Parametric Timed Automata". In: ATVA (2013). LNCS. Springer, Oct. 2013. [AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi, "Parametric real-time reasoning". In: STOC (1993). ACM, 1993. [Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes,

and John Mullins. "Bounded opacity for timed systems". In: Journal of Information Security and Applications 61 (Sept. 2021).

References II

Étienne André and Jun Sun. "Parametric Timed
Model Checking for Guaranteeing Timed
Opacity". In: ATVA (2019). LNCS. Springer,
2019.

[Dav05] Alexandre David. "Merging DBMs Efficiently". In: *NWPT* (2005). DIKU, University of Copenhagen, 2005.

[FORMATS22]

Étienne André, Dylan Marinho, Laure Petrucci, and Jaco van de Pol. "Efficient Convex Zone Merging in Parametric Timed Automata". In: *FORMATS* (2022). LNCS. Springer, 2022.

I see as a			
	04	acci	····

Preliminaries

Efficient verification

Conclusion

References III

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: *FTSCS* (2022). ACM, 2022.

> Frédéric Herbreteau and Thanh-Tung Tran. "Improving Search Order for Reachability Testing in Timed Automata". In: *FORMATS* (2015). LNCS. Springer, 2015.

[Hun+02]

[HT15]

Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. "Linear parametric model checking of timed automata". In: *Journal of Logic and Algebraic Programming* 52-53 (2002).

ET-opacity

References IV

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023.

[TAP21]

Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: *TAP* (2021). LNCS. Springer, 2021.

[TOSEM22]

Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *ACM TOSEM* 31 (2022).

÷					n
	0		6		

Preliminaries 00000000 Efficient verification

ET-opacity

Conclusion

Licensing

Source of the graphics used I

Author: Fidsor Source: https://pixabay.com/fr/illustrations/fraude-pirate-hame%C3%A7onnage-escroquer-7065 License: Pixabay Content License

Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien exterminate Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg License: public domain

Title: Piratey, vector version

fficient verification

Conclusion

Source of the graphics used II

Author: Gustavb Source: https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg License: CC by-sa

Title: Expired Author: RRZEicons Source: https://commons.wikimedia.org/wiki/File:Expired.svg License: CC by-sa

Results

		Nomerge	M2.12	RVMr	OQM
	# wins	24	20	22	42
۵	Avg (s)	10.0	5.47	4.56	3.77
<u> </u>	Avg (merge) (s)	18.8	7.83	5.57	3.63
	Avg (no merge) (s)	3.83	3.82	3.85	3.88
	Median (s)	1.39	1.2	1.14	1.12
	Norm. avg	1.0	0.91	0.91	0.87
	Norm. avg (merge)	1.0	0.75	0.74	0.64
	Norm. avg (no merge)	1.0	1.02	1.03	1.03
	# wins	0	19	37	16
States	Avg	11443.08	11096.54	11064.37	11120.79
	Avg (merge)	1512.02	670.43	592.31	729.33
	Median	2389.5	703.5	604.5	905.0
	Norm. avg	1.0	0.86	0.84	0.88

Gain of 62% of the average computation time

Preliminaries

Efficient verification

ET-opacity

Conclusion

An example

[FTSCS22]

Uncontrollable u Controllable a, b, c, d, e, f

Is the system fully ET-opaque?

- Visiting ℓ_2 : [1,5]
- ▶ Not visiting ℓ_2 : $[1,3] \cup [4,4] \cup [5,+inf)$

 \Rightarrow Not fully ET-opaque

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: *FTSCS* (2022). ACM, 2022

ET-opacity

[FTSCS22]

An example

Uncontrollable u Controllable a, b, c, d, e, f Allowed u + b, c Disabled a, d, e, f

Is the system fully ET-opaque?

- ▶ Visiting ℓ₂: [2, 5]
- ▶ Not visiting ℓ₂: [4, 4]
- \Rightarrow Not fully ET-opaque

[[]FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: *FTSCS* (2022). ACM, 2022

An example

Preliminaries

Efficient verification

ET-opacity

Conclusion

[FTSCS22]

$x \ge 2$

Uncontrollable u Controllable a, b, c, d, e, f Allowed u + a, f Disabled b, c, d, e

Is the system fully ET-opaque?

- Visiting ℓ_2 : [1,3]
- Not visiting ℓ_2 : [1,3]
- ⇒ Fully ET-opaque

Untimed control

Overview of Chapter 9 of the manuscript

- Restrict the behavior of the system to ensure ET-opacity
- ▶ Development of an open-source tool strategFTO (≈ 1200 lines of code, Java)
 - Enumeration of transition sets

Experiments

- Proof of concept
- Scalability of the tool

Publication

https://github.com/DylanMarinho/Controlling-TA
DOI 10.5281/zenodo.7181848

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: *FTSCS* (2022). ACM, 2022