
PhD defense

October 3rd, 2023
Nancy, France

Theoretical and algorithmic contributions to the
analysis of safety and security properties in timed

systems under uncertainty

Dylan Marinho

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Reviewers: Patricia Bouyer-Decitre
Thierry Jéron

Examiners:

Véronique Cortier
Thao Dang
Frédéric Herbreteau
Swen Jacobs

Supervisors: Étienne André
Stephan Merz

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

Motivation

I Real-time systems:
I Not only the functional correctness but also the time to answer

is important

I Failures (in correctness or timing) may result in dramatic
consequences

2 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

Motivation

I Critical Real-time systems:
I Not only the functional correctness but also the time to answer

is important
I Failures (in correctness or timing) may result in dramatic

consequences

2 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

Motivation

I Critical Real-time systems:
I Not only the functional correctness but also the time to answer

is important
I Failures (in correctness or timing) may result in dramatic

consequences

2 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

General context: side-channel attacks

I Threats to a system using non-algorithmic weaknesses

I Cache attacks
I Electromagnetic attacks
I Power attacks
I Acoustic attacks
I Timing attacks
I Temperature attacks
I etc.

I Example
I Number of pizzas (and order time) ordered by the white house

prior to major war announcements

3 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

General context: side-channel attacks

I Threats to a system using non-algorithmic weaknesses
I Cache attacks
I Electromagnetic attacks
I Power attacks
I Acoustic attacks
I Timing attacks
I Temperature attacks
I etc.

I Example
I Number of pizzas (and order time) ordered by the white house

prior to major war announcements

3 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

General context: side-channel attacks

I Threats to a system using non-algorithmic weaknesses
I Cache attacks
I Electromagnetic attacks
I Power attacks
I Acoustic attacks
I Timing attacks
I Temperature attacks
I etc.

I Example
I Number of pizzas (and order time) ordered by the white house

prior to major war announcements 1

1http://home.xnet.com/~warinner/pizzacites.html
3 / 57

http://home.xnet.com/~warinner/pizzacites.html

Introduction Preliminaries Efficient verification ET-opacity Conclusion

General context

General context: side-channel attacks

I Threats to a system using non-algorithmic weaknesses
I Cache attacks
I Electromagnetic attacks
I Power attacks
I Acoustic attacks
I Timing attacks
I Temperature attacks
I etc.

I Example
I Number of pizzas (and order time) ordered by the white house

prior to major war announcements 1

1http://home.xnet.com/~warinner/pizzacites.html
3 / 57

http://home.xnet.com/~warinner/pizzacites.html

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time:

ε+ ε+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time:

ε+ ε+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time: ε

+ ε+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time: ε+ ε

+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time: ε+ ε+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

A simple example of timing attack

1 # input pwd : Real password
2 # input attempt : Tenta t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] 6= attempt [i] then
5 return f a l s e
6 done
7 return t r u e

pwd c h i c k e n
attempt c h e e s e

Execution time: ε+ ε+ ε

I Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

Timing attacks

I Principle: deduce private information from timing data
(execution time)

Issues:
I May depend on the implementation (or, even worse, be

introduced by the compiler)
I A relatively trivial solution: make the program last always its

maximum execution time
Drawback: loss of efficiency

 Non-trivial problem

5 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

I Various methods:
I Abstract interpretation
I Static analysis
I Model checking
I Theorem proving

6 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

I Various methods:
I Abstract interpretation
I Static analysis
I Model checking
I Theorem proving

6 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timing attacks

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

I Various methods:
I Abstract interpretation
I Static analysis
I Model checking
I Theorem proving

6 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Methodology

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Methodology

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Methodology

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Methodology

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Methodology

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Outline

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline
1. Preliminaries: Timed model checking

2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Outline

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline
1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)

7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

The methodology

Outline

A program

A specification

“The program
must be secure”

A model

`0 `1 `2

y ≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline
1. Preliminaries: Timed model checking
2. Contribution: Efficient verification (Manuscript, Part I)

3. Contribution: Execution-time opacity (Manuscript, Part II)
7 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

8 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Outline

Preliminaries: (Parametric) Timed model checking
Timed model checking and Timed automata
Parametric timed model checking and Parametric timed
automata

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

9 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=

is unreachable
A property to be satisfied

I Question: does the model of the system satisfy the property?

Yes No

10 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=
is unreachable

A property to be satisfied

I Question: does the model of the system satisfy the property?

Yes No

10 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=
is unreachable

A property to be satisfied

I Question: does the model of the system satisfy the property?

Yes No

Coun-
terex-
ample

10 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations)

and actions) augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate

I Can be compared to integer constants in invariants

and guards

I Features

I Location invariant: property to be verified to stay at a location
I Transition guard: property to be verified to enable a transition
I Clock reset: some of the clocks can be set to 0 along

transitions

idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations and actions)

augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate

I Can be compared to integer constants in invariants

and guards

I Features

I Location invariant: property to be verified to stay at a location
I Transition guard: property to be verified to enable a transition
I Clock reset: some of the clocks can be set to 0 along

transitions

press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!
idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations and actions) augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate

I Can be compared to integer constants in invariants

and guards

I Features

I Location invariant: property to be verified to stay at a location
I Transition guard: property to be verified to enable a transition
I Clock reset: some of the clocks can be set to 0 along

transitions

press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!
idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations and actions) augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate
I Can be compared to integer constants in invariants

and guards

I Features
I Location invariant: property to be verified to stay at a location

I Transition guard: property to be verified to enable a transition
I Clock reset: some of the clocks can be set to 0 along

transitions

y≤ 5
y ≤ 8

press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!
idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations and actions) augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate
I Can be compared to integer constants in invariants and guards

I Features
I Location invariant: property to be verified to stay at a location
I Transition guard: property to be verified to enable a transition

I Clock reset: some of the clocks can be set to 0 along
transitions

y≤ 5
y ≤ 8

press?

x← 0
y← 0

y = 5
cup!x ≥ 1

press?

x← 0

y = 8
coffee!

idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Timed model checking and Timed automata

Timed automaton (TA) [AD94]

I Finite state automaton (sets of locations and actions) augmented with a
set X of clocks
I Real-valued variables evolving linearly at the same rate
I Can be compared to integer constants in invariants and guards

I Features
I Location invariant: property to be verified to stay at a location
I Transition guard: property to be verified to enable a transition
I Clock reset: some of the clocks can be set to 0 along

transitions

y≤ 5
y ≤ 8

press?
x← 0
y← 0

y = 5
cup!x ≥ 1

press?
x← 0

y = 8
coffee!

idle
adding sugar
delivering coffee

11 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Outline

Preliminaries: (Parametric) Timed model checking
Timed model checking and Timed automata
Parametric timed model checking and Parametric timed
automata

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

12 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric

Timed Automaton (PTA) [AHV93]

I Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters
I Unknown constants compared to a clock in guards and

invariants

y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y = 5
cup!x ≥ 1

press?
x← 0

y = 8
coffee!

13 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Timed Automaton (PTA) [AHV93]

I Timed automaton (sets of locations, actions and clocks)
augmented with a set P of parameters
I Unknown constants compared to a clock in guards and

invariants

y ≤ p2
y ≤ 8

press?
x ← 0
y ← 0

y =p2
cup!x ≥ p1

press?
x← 0

y =p3
coffee!

13 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric

timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

I Question: does the model of the system satisfy the property?

Yes

if…

No

Coun-
terex-
ample

14 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

I Question: for what values of the parameters does the model
of the system satisfy the property?

Yes if…

No

delay

period

2 × delay > 20.46 × period

14 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Valuation of a PTA = TA

I Given a PTA P and a parameter valuation v,
v(P) is the TA where each parameter p is valuated by v(p)

v

 y ≤ p2

y ≤ 8
press?
x ← 0
y ← 0

y =p2
cup!

x ≥ p1
press?

x← 0

y =p3
coffee!

 = y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

with v :

p1 → 1
p2 → 5
p3 → 8

15 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Valuation of a PTA = TA

I Given a PTA P and a parameter valuation v,
v(P) is the TA where each parameter p is valuated by v(p)

v

 y ≤ p2

y ≤ 8
press?
x ← 0
y ← 0

y =p2
cup!

x ≥ p1
press?

x← 0

y =p3
coffee!

 = y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

with v :

p1 → 1
p2 → 5
p3 → 8

15 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Parametric timed model checking and Parametric timed automata

Parametric Zone Graph (PZG)

I Parametric extension zone graph of TAs
I Symbolic state: a pair with

I a location
I an attached parametric zone: a set of valuations defined by

conjunctions of constraints over clocks and parameters

`0

`1

`2

`3

x ≤ p2

x > 2p1

[HT15]

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s5
`3
x ≤ p2

16 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

17 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Efficient verification of PTA models

I The verification of systems modeled by PTAs is difficult
(undecidability, state-space explosion, …)

Goal
I Efficient verification
I Reducing computation time
I Larger/more realistic case studies
⇒ Can we exhibit a more efficient algorithm?

Contributions
I Benchmark library [TAP21]

I Zone merging algorithm [FORMATS22]

18 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Efficient verification of PTA models

I The verification of systems modeled by PTAs is difficult
(undecidability, state-space explosion, …)

Goal
I Efficient verification
I Reducing computation time
I Larger/more realistic case studies
⇒ Can we exhibit a more efficient algorithm?

Contributions
I Benchmark library [TAP21]

I Zone merging algorithm [FORMATS22]

18 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Efficient verification of PTA models

I The verification of systems modeled by PTAs is difficult
(undecidability, state-space explosion, …)

Goal
I Efficient verification
I Reducing computation time
I Larger/more realistic case studies
⇒ Can we exhibit a more efficient algorithm?

Contributions
I Benchmark library [TAP21]

I Zone merging algorithm [FORMATS22]

18 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata
Merging Zones
Experiments & Results

Contribution: Execution-time opacity

Conclusion & Perspectives

19 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging states

Definition

Two states (,C1) and (,C2) are mergeable if:
I =

I C1 ∪ C2 is convex
Their merging is defined by (,C1 ∪ C2)

State merging techniques were introduced:
I in TA [Dav05]

I in PTA for the Inverse Method only [AFS13]

→ Contribution: Extension to reachability properties

20 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging states

Definition

Two states (,C1) and (,C2) are mergeable if:
I =

I C1 ∪ C2 is convex
Their merging is defined by (,C1 ∪ C2)

State merging techniques were introduced:
I in TA [Dav05]

I in PTA for the Inverse Method only [AFS13]

→ Contribution: Extension to reachability properties

20 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging states

Definition

Two states (,C1) and (,C2) are mergeable if:
I =

I C1 ∪ C2 is convex
Their merging is defined by (,C1 ∪ C2)

State merging techniques were introduced:
I in TA [Dav05]

I in PTA for the Inverse Method only [AFS13]

→ Contribution: Extension to reachability properties

20 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1 `2

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1
`2
(x > 2p1) ∪ True

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1
`2
True

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1
`2
True

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1
`2
True

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Constructing the PZG with merging algorithm

When constructing a new state, check if it can be merged

`0

`1

`2

`3

x ≤ p2

x > 2p1

s0
`0
True

s1
`2
x > 2p1

s2
`1
True

s3
`3
2p1 < p2

s4
`2
True

s1
`2
True

s5
`3
x ≤ p2

21 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging can make difference for termination!
PZG without any heuristic

`0

`1
x≤ p

y ≤ p y ≥ p

x ≥ q
x := 0

`0 —

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

22 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging can make difference for termination!
PZG with inclusion

`0

`1
x≤ p

y ≤ p y ≥ p

x ≥ q
x := 0

`0 —

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

22 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging can make difference for termination!
PZG with inclusion

`0

`1
x≤ p

y ≤ p y ≥ p

x ≥ q
x := 0

`0 —

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

22 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging can make difference for termination!
PZG with merging

`0

`1
x≤ p

y ≤ p y ≥ p

x ≥ q
x := 0

`0 —

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

22 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Merging can make difference for termination!
PZG with merging

`0

`1
x≤ p

y ≤ p y ≥ p

x ≥ q
x := 0

`0 —

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

`1
x

y

`1
x

y

· · ·

`1
x

y

22 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Preservation of properties

Theorem
Merging states while computing the PZG is correct for reachability
properties

But
I The test of convexity is (very) expensive
I The merge order can have consequences on the efficiency
I Performing an exhaustive zone merging is not efficient

Implementation
In a model-checker with heuristics

23 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Preservation of properties

Theorem
Merging states while computing the PZG is correct for reachability
properties

But
I The test of convexity is (very) expensive
I The merge order can have consequences on the efficiency
I Performing an exhaustive zone merging is not efficient

Implementation
In a model-checker with heuristics

23 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Preservation of properties

Theorem
Merging states while computing the PZG is correct for reachability
properties

But
I The test of convexity is (very) expensive
I The merge order can have consequences on the efficiency
I Performing an exhaustive zone merging is not efficient

Implementation
In a model-checker with heuristics

23 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Heuristics for merging

What to merge with what? Queue, Visited, Ordered
Restart after merge?
When to update the state space?

I After each merge
I After exploring the candidates list
I After exploring a level

How to update the state space?
I Reconstruction of the state-space
I In situ

24 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4C4C1

and Restart

C0

C2

C3

C4C1C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4C4C1

and Restart

C0

C2

C3

C4C1C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4C4C1

and Restart

C0

C2

C3

C4C1C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1

C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1

C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1

C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1

C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2

C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Merging Zones

Illustration of the merging options
s0

s1

s2 s3 s4

visited
in the queue
being processed
after merge

C0

C1

C2

C3

C4

Merge with Queue

C0

C1

C2

C3

C4

C4C2

Merge with Visited

C0

C1

C2

C3

C4

C4C1

and Restart

C0

C2

C3

C4C1

C4C1C0

Queue ; Visited

C0

C1

C2

C4

C3

C4C2

C4C2C1

25 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Experiments & Results

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata
Merging Zones
Experiments & Results

Contribution: Execution-time opacity

Conclusion & Perspectives

26 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Experiments & Results

Experiments

I Comparison of all the combinations of heuristics

I Use of the IMITATOR library, restricted to reachability-based
properties [TAP21]:
I 124 executions (model, reachability property)
I 42 executions perform at least one merge

[TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. “A Benchmarks Library for Extended
Parametric Timed Automata”. In: TAP (2021). LNCS. Springer, 2021

27 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Experiments & Results

The IMITATOR benchmark library Overview of Chapter 4 of the manuscript

Library Size
Vers. Bench. Models Prop.
1.0 34 80 122
2.0 56 119 216

Contribution
I More benchmarks (publications, industrial collaborations, …)
I Inclusion of liveness properties, unsolvable benchmarks
I Export to JANI
I Semantic information (computation time, expected result…)
I Published as long-term access

GLOBE imitator.fr/library2
DOI 10.5281/zenodo.4730980

[TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. “A Benchmarks Library for Extended
Parametric Timed Automata”. In: TAP (2021). LNCS. Springer, 2021

28 / 57

https://www.imitator.fr/library2
https://zenodo.org/badge/DOI/10.5281/zenodo.4730980.svg

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Experiments & Results

Comparing merging heuristics: Results

Nomerge RVMr OQM

Ti
m

e

wins 24 22 42
Avg (s) 10.0 4.56 3.77
Avg (merge) (s) 18.8 5.57 3.63
Avg (no merge) (s) 3.83 3.85 3.88
Median (s) 1.39 1.14 1.12

St
at

es

wins 0 37 16
Avg 11443.08 11064.37 11120.79
Avg (merge) 1512.02 592.31 729.33
Median 2389.5 604.5 905.0

Gain of 62% of the average computation time

29 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

30 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Execution-time opacity

I How to detect timing-leak vulnerabilities?

Goal
I Propose a formalization of the private information and

attacker model
I Check whether a model is secure or not

Contributions
I ET-opacity definition, decidability results and experiments [TOSEM22]

I Expiring ET-opacity definition and decidability results [ICECCS23]

I Untimed control [FTSCS22]

31 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Execution-time opacity

I How to detect timing-leak vulnerabilities?

Goal
I Propose a formalization of the private information and

attacker model
I Check whether a model is secure or not

Contributions
I ET-opacity definition, decidability results and experiments [TOSEM22]

I Expiring ET-opacity definition and decidability results [ICECCS23]

I Untimed control [FTSCS22]

31 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Contribution: Execution-time opacity

I How to detect timing-leak vulnerabilities?

Goal
I Propose a formalization of the private information and

attacker model
I Check whether a model is secure or not

Contributions
I ET-opacity definition, decidability results and experiments [TOSEM22]

I Expiring ET-opacity definition and decidability results [ICECCS23]

I Untimed control [FTSCS22]

31 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Our attacker model

Attacker capabilities
I Has access to the model (white box)
I Can only observe the total execution time

Attacker goal
I Wants to deduce some private information based on these

observations
→ visit of a private location

32 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Introduction

Our attacker model

Attacker capabilities
I Has access to the model (white box)
I Can only observe the total execution time

Attacker goal
I Wants to deduce some private information based on these

observations
→ visit of a private location

32 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Expiring ET-opacity problems
Untimed control

Conclusion & Perspectives

33 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Formalization
Hypotheses: [AS19][TOSEM22]

I A start location `0 and an end location `f
I A special private location `priv

`0

`priv

`f

Definition (execution-time opacity)
The system is ET-opaque for a duration d if there exist two runs
to `f of duration d

1. one visiting `priv

2. one not visiting `priv

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

34 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Formalization
Hypotheses: [AS19][TOSEM22]

I A start location `0 and an end location `f
I A special private location `priv

`0

`priv

`f

Definition (execution-time opacity)
The system is ET-opaque for a duration d if there exist two runs
to `f of duration d

1. one visiting `priv

2. one not visiting `priv

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

34 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)
There exist a duration d and two runs of duration d,

one visiting `priv ,
one not visiting `priv

Weak
For all durations d,

There exists a run of duration d visiting `priv
⇒

There exists a run of duration d not visiting `priv

Full
For all durations d,

There exists a run of duration d visiting `priv
⇔

There exists a run of duration d not visiting `priv

35 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations 6= ∅

Weak
For all durations d,

There exists a run of duration d visiting `priv
⇒

There exists a run of duration d not visiting `priv

Full
For all durations d,

There exists a run of duration d visiting `priv
⇔

There exists a run of duration d not visiting `priv

35 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations 6= ∅

Weak
For all durations d,

There exists a run of duration d visiting `priv
⇒

There exists a run of duration d not visiting `priv

Full
For all durations d,

There exists a run of duration d visiting `priv
⇔

There exists a run of duration d not visiting `priv

35 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations 6= ∅

Weak
For all durations d,

There exists a run of duration d visiting `priv
⇒

There exists a run of duration d not visiting `priv

Full
For all durations d,

There exists a run of duration d visiting `priv
⇔

There exists a run of duration d not visiting `priv

35 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations 6= ∅

Weak
private durations ⊆ public durations

Full
private durations = public durations

35 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0

`0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0

`priv `priv `f

1

b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv

`priv `f

1 b

1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv

`f

1 b 1

c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0

`0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0

`f

2

a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d = 2:

visiting `priv

`0 `0 `priv `priv `f
1 b 1 c

not visiting `priv

`0 `0 `f
2 a

The system is ET-opaque for a duration d = 2

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

36 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]:

visiting `priv

`0 `0 `priv `priv `f
1 b d− 1 c

not visiting `priv

`0 `0 `f
d a

The system is ET-opaque for all durations in [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

37 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

37 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

38 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

38 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

38 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

38 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in TAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

I There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

I private durations are [1, 2.5]
public durations are [0, 3]

I private durations ⊆ public durations

The system is weakly ET-opaque

I private durations 6= public durations

The system is not fully ET-opaque

38 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Expiring ET-opacity problems
Untimed control

Conclusion & Perspectives

39 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

40 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

40 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

40 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion Private Public Answer
p1 = 1 ∧ p2 = 2.5

∃
[1, 2.5] [0, 3]

√

weak
√

full ×

∃
[0, 3] [0, 3]

√

weak
√

full
√

40 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion Private Public Answer
p1 = 1 ∧ p2 = 2.5

∃
[1, 2.5] [0, 3]

√

weak
√

full ×
p1 = 0 ∧ p2 = 3

∃
[0, 3] [0, 3]

√

weak
√

full
√

40 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Two classes of parametric problems

p-Emptiness problem
Decide the emptiness of the set of parameter valuations v

s. t. v(P) is ET-opaque

p-Synthesis problem
Synthesize the set of parameter valuations v

s. t. v(P) is ET-opaque

41 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness
p-Synthesis

0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3
∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

42 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis

0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3
∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

42 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3

0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2

∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

42 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3

p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

42 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

42 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Decidability results for ET-opacity

∃-ET-opaque weakly ET-
opaque

fully ET-
opaque

Decision TA
√ √ √

p-emptiness L/U-PTA
√

× ×
PTA × × ×

p-synthesis L/U-PTA × × ×
PTA × × ×

I L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

I Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in Manuscript, Chapter 7)

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

43 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

Decidability results for ET-opacity

∃-ET-opaque weakly ET-
opaque

fully ET-
opaque

Decision TA
√ √ √

p-emptiness L/U-PTA
√

× ×
PTA × × ×

p-synthesis L/U-PTA × × ×
PTA × × ×

I L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

I Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in Manuscript, Chapter 7)

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

43 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

ET-opacity problems in PTAs

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of ∃-ET-opacity p-emptiness)
Given P, the mere existence of a parameter valuation v s. t. v(P)
∃-ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

`0 `fP`0
′ `priv

`pub `f
′

Remark: L/U-PTA is a decidable subclass

44 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Expiring ET-opacity problems
Untimed control

Conclusion & Perspectives

45 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Expiring ET-opacity

I How to deal with outdated secrets?
e. g., cache values, status of the memory, …

Idea
The secret can expire: beyond a certain duration, knowing the
secret is useless to the attacker (e. g., a cache value) [Amm+21]

46 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Expiring ET-opacity

Assumption
Knowing an expired secret is equivalent to not knowing a secret

Secret runs Non-secret runs

ET-opacity Runs visiting the private lo-
cation

Runs not visiting the pri-
vate location

(= private runs) (= public runs)

expiring-ET-opacity Private runs with `priv visit
≤ ∆ before the system
completion

(i) Public runs and
(ii) Private runs with `priv
visit > ∆ before the system
completion

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

47 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Three levels of

expiring

ET-opacity

Existential (∃)

expiring

private durations ∩ public durations 6= ∅

Weak

expiring

private durations ⊆ public durations

Full

expiring

private durations = public durations

48 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Three levels of expiring ET-opacity

Existential (∃) expiring
secret durations ∩ non-secret durations 6= ∅

Weak expiring
secret durations ⊆ non-secret durations

Full expiring
secret durations = non-secret durations

48 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non-secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

49 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non-secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×
49 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise
Secret [p1,min(∆ + 3,p2)] ∅

Non-secret (p1 +∆,p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness
(p+∆)-Synthesis

p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

50 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise
Secret [p1,min(∆ + 3,p2)] ∅

Non-secret (p1 +∆,p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis

p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

50 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise
Secret [p1,min(∆ + 3,p2)] ∅

Non-secret (p1 +∆,p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

50 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Example

`0

`priv

`f
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise
Secret [p1,min(∆ + 3,p2)] ∅

Non-secret (p1 +∆,p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3
p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)

∨(p2 = 3))

50 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Decidability results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness L/U-PTA × ×
PTA × ×

(p +∆)-synthesis L/U-PTA × ×
PTA × ×

I ∃-expiring ET-opacity was left as a future work.
I L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) [Hun+02]

I Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in Manuscript, Chapter 8)

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

51 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Expiring ET-opacity problems

Decidability results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness L/U-PTA × ×
PTA × ×

(p +∆)-synthesis L/U-PTA × ×
PTA × ×

I ∃-expiring ET-opacity was left as a future work.
I L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) [Hun+02]
I Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).

(see formal proofs in Manuscript, Chapter 8)

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

51 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Untimed control

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Expiring ET-opacity problems
Untimed control

Conclusion & Perspectives

52 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Untimed control

Untimed control Overview of Chapter 9 of the manuscript

`1

`2

`f

`3`4

x ≤ 3

x ≥
1
a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3
u

x > 4
d

x← 0

x = 5
e

f
x← 0

−→ `1

`2

`f

`3`4

x ≤ 3

x ≥
1
a

a

x > 2
f

u

1 ≤ x ≤ 3
u

f
x← 0

I Restrict the behavior of the system to ensure ET-opacity
I Development of an open-source tool strategFTO (≈ 1200

lines of code, Java)
I Enumeration of transition sets

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022

53 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Outline

Preliminaries: (Parametric) Timed model checking

Contribution: Efficient verification in Parametric Timed Automata

Contribution: Execution-time opacity

Conclusion & Perspectives

54 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Conclusion

Efficient verification
I A new benchmark library (119 models, 216 properties) [TAP21]

I Zone merging algorithm for PTA verification [FORMATS22]

Execution-time opacity
I Formalization and decidability results of ET-opacity [TOSEM22]

I Extension with secrets with expiration date [ICECCS23]

I Untimed control, implementation of strategFTO [FTSCS22]

55 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Perspectives

Merging states in PZG
I Merge more than 2 states, “best” merge
I Compatibility of merging and liveness properties

Execution-time opacity
I Extension of the definition to another formalism
I Automatic translation of programs to PTAs
→ Preliminary translation with Petri nets including cache system

Other kind of parameters
I Parametric systems: probabilities, costs
I Parameterized systems: number of components

56 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Publications
[FORMATS22] Étienne André, Dylan Marinho, Laure Petrucci, and

Jaco van de Pol. “Efficient Convex Zone Merging in Parametric
Timed Automata”. In: FORMATS (2022). LNCS. Springer,
2022.

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and
Dylan Marinho. “strategFTO: Untimed control for timed
opacity”. In: FTSCS (2022). ACM, 2022.

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho.
“Expiring opacity problems in parametric timed automata”. In:
ICECCS (2023). To appear. Springer, 2023.

[TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. “A
Benchmarks Library for Extended Parametric Timed
Automata”. In: TAP (2021). LNCS. Springer, 2021.

[TICSA23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho,
and Jun Sun. “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata”. In: TICSA.
2023.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun.
“Guaranteeing Timed Opacity using Parametric Timed Model
Checking”. In: ACM TOSEM 31 (2022).

57 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

References I

[AD94] Rajeev Alur and David L. Dill. “A theory of
timed automata”. In: TCS 126 (Apr. 1994).

[AFS13] Étienne André, Laurent Fribourg, and
Romain Soulat. “Merge and Conquer: State
Merging in Parametric Timed Automata”. In:
ATVA (2013). LNCS. Springer, Oct. 2013.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and
Moshe Y. Vardi. “Parametric real-time
reasoning”. In: STOC (1993). ACM, 1993.

[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes,
and John Mullins. “Bounded opacity for timed
systems”. In: Journal of Information Security and
Applications 61 (Sept. 2021).

58 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

References II

[AS19] Étienne André and Jun Sun. “Parametric Timed
Model Checking for Guaranteeing Timed
Opacity”. In: ATVA (2019). LNCS. Springer,
2019.

[Dav05] Alexandre David. “Merging DBMs Efficiently”.
In: NWPT (2005). DIKU, University of
Copenhagen, 2005.

[FORMATS22] Étienne André, Dylan Marinho, Laure Petrucci,
and Jaco van de Pol. “Efficient Convex Zone
Merging in Parametric Timed Automata”. In:
FORMATS (2022). LNCS. Springer, 2022.

59 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

References III

[FTSCS22] Étienne André, Shapagat Bolat,
Engel Lefaucheux, and Dylan Marinho.
“strategFTO: Untimed control for timed
opacity”. In: FTSCS (2022). ACM, 2022.

[HT15] Frédéric Herbreteau and Thanh-Tung Tran.
“Improving Search Order for Reachability Testing
in Timed Automata”. In: FORMATS (2015).
LNCS. Springer, 2015.

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga,
and Frits W. Vaandrager. “Linear parametric
model checking of timed automata”. In: Journal
of Logic and Algebraic Programming 52-53
(2002).

60 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

References IV

[ICECCS23] Étienne André, Engel Lefaucheux, and
Dylan Marinho. “Expiring opacity problems in
parametric timed automata”. In: ICECCS (2023).
To appear. Springer, 2023.

[TAP21] Étienne André, Dylan Marinho, and
Jaco van de Pol. “A Benchmarks Library for
Extended Parametric Timed Automata”. In: TAP
(2021). LNCS. Springer, 2021.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and
Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM
TOSEM 31 (2022).

61 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Licensing

62 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Source of the graphics used I

Author: Fidsor
Source: https://pixabay.com/fr/illustrations/fraude-pirate-hame%C3%A7onnage-escroquer-7065116/

License: Pixabay Content License

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License: public domain

Title: Smiley green alien exterminate
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg

License: public domain

Title: Piratey, vector version

63 / 57

https://pixabay.com/fr/illustrations/fraude-pirate-hame%C3%A7onnage-escroquer-7065116/
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Source of the graphics used II

Author: Gustavb
Source: https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg

License: CC by-sa

Title: Expired
Author: RRZEicons
Source: https://commons.wikimedia.org/wiki/File:Expired.svg

License: CC by-sa

64 / 57

https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg
https://commons.wikimedia.org/wiki/File:Expired.svg

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Results

Nomerge M2.12 RVMr OQM

Ti
m

e

wins 24 20 22 42
Avg (s) 10.0 5.47 4.56 3.77
Avg (merge) (s) 18.8 7.83 5.57 3.63
Avg (no merge) (s) 3.83 3.82 3.85 3.88
Median (s) 1.39 1.2 1.14 1.12
Norm. avg 1.0 0.91 0.91 0.87
Norm. avg (merge) 1.0 0.75 0.74 0.64
Norm. avg (no merge) 1.0 1.02 1.03 1.03

St
at

es

wins 0 19 37 16
Avg 11443.08 11096.54 11064.37 11120.79
Avg (merge) 1512.02 670.43 592.31 729.33
Median 2389.5 703.5 604.5 905.0
Norm. avg 1.0 0.86 0.84 0.88

Gain of 62% of the average computation time

65 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

An example [FTSCS22]

`1

`2

`f

`3`4

x ≤ 3

x ≥
1
a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3
u

x > 4
d

x← 0

x = 5
e

f
x← 0

Uncontrollable u
Controllable a, b, c, d, e, f

Is the system fully ET-opaque?
I Visiting `2: [1, 5]
I Not visiting `2: [1, 3] ∪ [4, 4] ∪ [5,+ inf)

⇒ Not fully ET-opaque

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022

66 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

An example [FTSCS22]

`1

`2

`f

`3`4

x ≤ 3

x ≥
1
a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3
u

x > 4
d

x← 0

x = 5
e

f
x← 0

Uncontrollable u
Controllable a, b, c, d, e, f

Allowed u + b, c
Disabled a, d, e, f

Is the system fully ET-opaque?
I Visiting `2: [2, 5]
I Not visiting `2: [4, 4]
⇒ Not fully ET-opaque

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022

66 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

An example [FTSCS22]

`1

`2

`f

`3`4

x ≤ 3

x ≥
1
a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3
u

x > 4
d

x← 0

x = 5
e

f
x← 0

Uncontrollable u
Controllable a, b, c, d, e, f

Allowed u + a, f
Disabled b, c, d, e

Is the system fully ET-opaque?
I Visiting `2: [1, 3]
I Not visiting `2: [1, 3]
⇒ Fully ET-opaque

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022

66 / 57

Introduction Preliminaries Efficient verification ET-opacity Conclusion

Untimed control Overview of Chapter 9 of the manuscript

I Restrict the behavior of the system to ensure ET-opacity
I Development of an open-source tool strategFTO (≈ 1200

lines of code, Java)
I Enumeration of transition sets

Experiments
I Proof of concept
I Scalability of the tool

Publication
Github https://github.com/DylanMarinho/Controlling-TA

DOI 10.5281/zenodo.7181848
[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed

control for timed opacity”. In: FTSCS (2022). ACM, 2022
67 / 57

https://github.com/DylanMarinho/Controlling-TA
https://zenodo.org/record/7181848

	Introduction
	General context
	Timing attacks
	The methodology

	Preliminaries: (Parametric) Timed model checking
	Timed model checking and Timed automata
	Parametric timed model checking and Parametric timed automata

	Contribution: Efficient verification in Parametric Timed Automata
	Introduction
	Merging Zones
	Experiments & Results

	Contribution: Execution-time opacity
	Introduction
	ET-opacity problems in TAs
	ET-opacity problems in PTAs
	Expiring ET-opacity problems
	Untimed control

	Conclusion & Perspectives

