

February 8, 2021 Online

Guaranteeing Timed Opacity using Parametric Timed Model Checking

Étienne André¹, Didier Lime², Dylan Marinho¹ and Sun Jun³

 1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France 2 École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

³ School of Information Systems, Singapore Management University, Singapore

Supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015)

Context: timing attacks

 Principle: deduce private information from timing data (execution time)

Issues:

 May depend on the implementation (or, even worse, be introduced by the compiler)

 A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

 $\rightsquigarrow \mathsf{Non-trivial} \ \mathsf{problem}$

pwd	с	h	i	с	k	е	n
attempt	с	h	е	е	S	е	
Execution ti	me:						


```
1 # input pwd : Real password
2 # input attempt: Tentative password
3 for i = 0 to min(len(pwd, len(attempt)) - 1 do
4 if pwd[i] =/= attempt[i] then
5 return false
6 done
7 return true
8
```


Execution time: $\epsilon + \epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Further question: can we also tune internal timing constants to make the system resisting to timing attacks?

Time-opacity synthesis

Exhibit execution times and internal timing constants for which it is not possible to infer information on the internal behavior

Outline

Formalism and Computation results

Toward parameter synthesis

Perspectives

Finite state automaton (sets of locations)

[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8 Dylan Marinet

Finite state automaton (sets of locations and actions)

 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [AD94]

Real-valued variables evolving linearly at the same rate

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [AD94]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants
- Features
 - Location invariant: property to be verified to stay at a location

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along

Formalization

Hypotheses:

- A start location ℓ_0 and an end location ℓ_f
- A special private location ℓ_{priv}

Definition (timed opacity)

The system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for a duration d if there exist two runs to ℓ_f of duration d

- 1. one passing by ℓ_{priv}
- 2. one *not* passing by ℓ_{priv}

[AS19]

[[]AS19] Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7

Example

• There exist two runs of duration d = 2:

Example

• There exist two runs of duration d = 2:

Example

• There exist two runs of duration d = 2:

$\rightarrow \ell_0$	1	\sim
		- 20

Example

► There exist two runs of duration d = 2: $\rightarrow \ell_0$ $\xrightarrow{1}$ $\rightarrow \ell_0$ \xrightarrow{b} $\xrightarrow{0}$ $\xrightarrow{l_{priv}}$

Example

► There exist two runs of duration d = 2: $\rightarrow \ell_0$ $\xrightarrow{1}$ $\xrightarrow{\ell_0}$ \xrightarrow{b} $\xrightarrow{0}$ $\xrightarrow{\ell_{priv}}$ $\xrightarrow{1}$ $\xrightarrow{\ell_{priv}}$

Example

► There exist two runs of duration d = 2: → ℓ_0 → ℓ_0 → ℓ_0 → ℓ_{piv} → ℓ_{piv} → ℓ_{piv} → ℓ_{piv} → ℓ_{piv} → ℓ_{piv}

► There exist two runs of duration d = 2: $\rightarrow \ell_0$ $\xrightarrow{1}$ $\rightarrow \ell_0$ \xrightarrow{b} $\xrightarrow{0}$ $\xrightarrow{0}$ \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l}

► There exist two runs of duration d = 2: $\rightarrow \ell_0$ $\xrightarrow{1}$ $\rightarrow \ell_0$ \xrightarrow{b} $\xrightarrow{0}$ $\xrightarrow{0}$ \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l} \xrightarrow{l}

Dylan Marinho

Example

There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

Example

There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

Example

There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

But There exists a run of duration 1.5 passing by ℓ_{priv}

$$\rightarrow \underbrace{\begin{array}{c}1\\0\end{array}}_{\ell_0} \xrightarrow{b} \underbrace{\begin{array}{c}0.5\\0\end{array}}_{\ell_{priv}} \xrightarrow{c} \underbrace{\begin{array}{c}0\\0\end{array}}_{\ell_{priv}} \xrightarrow{c} \underbrace{\end{array}{\begin{array}{c}0\\0\end{array}}_{\ell_{priv}} \xrightarrow{c} \underbrace{\end{array}{\end{array}{c} \underbrace{\end{array}{\end{array}}_{\ell_{priv}} \xrightarrow{c} \underbrace{\end{array}{\end{array}{c} \underbrace{\end{array}{c} \underbrace{\end{array}{c} \underbrace{\end{array}{}} \underbrace{\end{array}{c} \underbrace{\end{array}{c}$$

Example

There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

But

There exists a run of duration 1.5 passing by ℓ_{priv}

It is not possible to reach ℓ_f with a path of duration 1.5 not passing by ℓ_{priv}

Example

There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

But

There exists a run of duration 1.5 passing by ℓ_{priv}

It is not possible to reach ℓ_f with a path of duration 1.5 not passing by $\ell_{\textit{priv}}$

We say that the system is *not* fully opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Problem 1: timed-opacity computation

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Problem 1: timed-opacity computation

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is decidable

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Problem 1: timed-opacity computation

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is decidable

Proof: based on the region graph and RA-arithmetic (see [And+])

Exact complexity: unproved (EXPSPACE upper bound proved, but exponential hardness seems likely)

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Outline

Formalism and Computation results

Toward parameter synthesis

Perspectives

Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242

Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters [AHV93]
 - Unknown constants compared to a clock in guards and invariants

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-88791-591-7. DOI: 10.1145/167088.167242

Overview of our theoretical results

General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable

[And+]

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
 - The existence of valuations for timed opacity w.r.t. some execution times is decidable
 - The existence of valuations for full timed opacity is undecidable
 - The synthesis is uncomptable in pratice

[And+]

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
 - The existence of valuations for timed opacity w.r.t. some execution times is decidable
 - The existence of valuations for full timed opacity is undecidable
 - The synthesis is uncomptable in pratice

[And+]

We adopt a "best-effort" approach for the general case of $\ensuremath{\mathsf{PTAs}}$

Approach not guaranteed to terminate in theory

[[]And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Outline

Formalism and Computation results

Toward parameter synthesis

Perspectives

Perspectives

On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

Perspectives

On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

On the pratical side

Have an automatic translation of programs to PTAs

 \rightarrow Some experiments were done, but on Java programs manually translated to PTAs

- Repairing a non-opaque system
 - \rightarrow Preliminary ideas in $[And+]^a$, but not fixed

^a[And+] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted

Guaranteeing Timed Opacity using Parametric Timed Model Checking $\hfill \mathsf{Perspectives}$

References I

Rajeev Alur and David L. Dill. "A theory of timed automata". In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: *STOC*. Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242.

Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". submitted.

References II

Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: *ATVA* (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7.