
LATEX TikZposter

Guaranteeing Timed Opacity using Parametric Timed Model Checking
Étienne André1, Didier Lime2, Dylan Marinho1 and Sun Jun3

Dylan.Marinho@loria.fr
1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

2 École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France
3 School of Information Systems, Singapore Management University, Singapore

Guaranteeing Timed Opacity using Parametric Timed Model Checking
Étienne André1, Didier Lime2, Dylan Marinho1 and Sun Jun3

Dylan.Marinho@loria.fr
1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

2 École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France
3 School of Information Systems, Singapore Management University, Singapore

Context: timing attacks
• Principle: deduce private information from timing data (execution time)
• Issues:

– May depend on the implementation (introduced by the compiler)
– A relatively trivial solution: make the program last always its maximum execution time

Drawback: loss of efficiency
• Informal problems

– Question: can we exhibit secure execution times?
– Further question: can we also tune internal timing constants to make the system re-

sisting to timing attacks?

Objective. Given a system modeled by a timed automaton, can we exhibit secure
execution times, i. e., for which an attacker having only access to the global execution
time cannot deduce whether some private location was visited?

A simple example of a timing attack
1 # input pwd : Real password
2 # input attempt : Tentat ive password
3 for i = 0 to min(len (pwd , len (attempt)) − 1 do
4 i f pwd [i] =/= attempt [i] then
5 return f a l s e
6 done
7 return t rue

Listing 1: Code describing the verification of a tentative password input by the user
pwd c h i c k e n
attempt c h e e s e
Execution time ϵ ϵ ϵ

• Problem: The execution time is proportional to the number of consecutive correct char-
acters from the beginning of attempt

Formalism: Timed Automaton (TA) [AD94]

y ≤ 5
y ≤ 8

press?
x := 0
y := 0

y = 5
cup!

x ≥ 1
press?
x := 0

y = 8
coffee!

• Finite state automaton (sets of locations and actions) augmented with a set X of clocks
– Real-valued variables evolving linearly at the same rate
– Can be compared to integer constants in invariants and guards

• Features
– Location invariant: property to be verified to stay at a location
– Transition guard: property to be verified to enable a transition
– Clock reset: some of the clocks can be set to 0 along transitions

Timed-opacity definition [TOSEM22]

Attacker model The attacker only has access to the global execution time from
the initial location to some final location (no action is visible)

Secret Has the system visited some private location ℓpriv?

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
b

x ≥ 1

a
x ≥ 2

c

Definition (timed opacity) The system is opaque w.r.t. ℓpriv on the way to ℓf

for a duration d if there exist two runs from ℓ0 to ℓf of duration d

1. one passing by ℓpriv

2. one not passing by ℓpriv

Example
• There exist two runs of duration d for all durations d ∈ [2, 3]:

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 0 d − 1 c 0

ℓ0 ℓ0 ℓf
d a 0

The system is opaque w.r.t. ℓpriv on the way to ℓf for all durations in [2, 3]
• But it is not possible to reach ℓf with a path of duration 1.5 not passing by ℓpriv

The system is not fully opaque w.r.t. ℓpriv on the way to ℓf

Theorem The durations d such that the system is opaque can be effectively computed
and defined

Corollary Asking whether a TA is opaque for all its execution times (“full timed-
opacity”) is decidable

Extension to models with timing parameters

Parametric Timed Automaton (PTA) [AHV93]

• Timed automaton (sets of locations, actions and clocks) augmented with a set P of
parameters (Unknown constants compared to a clock in guards and invariants)

• High interest of timing parameters: underspecified systems, or partially
known systems

Overview of our theoretical results [TOSEM22]

• General case: The mere existence of a parameter valuation for which there exists a
duration for which timed-opacity is achieved is undecidable

• Study of a subclass known for being “at the frontier” of decidability (L/U-PTA) [Hun+02]
• Practical contribution: We adopt a “best-effort” approach for the general case of PTAs:

this approach is not guaranteed to terminate

Experiments [TOSEM22]

Description
• Verification engine: IMITATOR [And21]
• Common PTA benchmarks [TAP21]

• Library of Java programs [STA], manually translated to PTAs
– user-input variables translated to (non-timing) parameters (supported by IMITATOR)

Results
• Answer the timed opacity problems (TA), exhibiting which execution times are

opaque, and whether all execution times indeed guarantee opacity
• Answer the synthesis problem (PTA) exhibiting at least some valuations for which

the system can be made opaque

Perspectives
Theoretical side

• Some restricted problems remain open e. g., PTAs with one clock
Practical side

• Automatic translation of programs to PTAs
• Repairing a non-opaque system

References
[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
(1994).

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC. 1993.

[And21] Étienne André. “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”. In: CAV.
2021.

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. “Linear parametric
model checking of timed automata”. In: JLAP (2002).

[STA] STAC. url: https://github.com/Apogee-Research/STAC/.
[TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. “A Benchmarks Library for Extended Para-
metric Timed Automata”. In: TAP. 2021.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022).

This work was partially supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015)

