







#### FADEX

October 16th, 2023 Nancy, France

#### Preventing Timing Leaks using Parametric Timed Model Checking

Dylan Marinho, PhD

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Based on join works with Étienne André, Shapagat Bolat, Engel Lefaucheux, Didier Lime, and Sun Jun

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015) and the ANR research program BisoUS (ANR-22-CE48-0012).



Threats to a system using non-algorithmic weaknesses

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

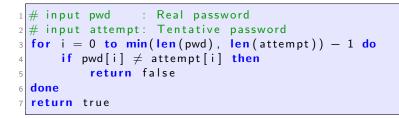
Threats to a system using non-algorithmic weaknesses

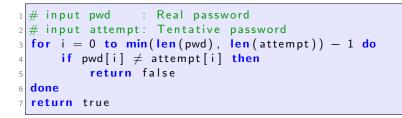
- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.



Number of pizzas (and order time) ordered by the white house prior to major war announcements <sup>1</sup>

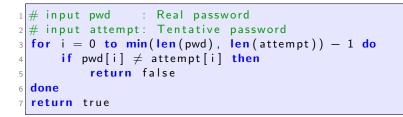
<sup>1</sup>http://home.xnet.com/~warinner/pizzacites.html

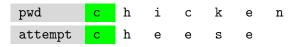

Threats to a system using non-algorithmic weaknesses


- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

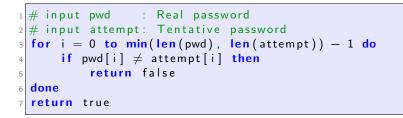


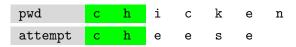
Number of pizzas (and order time) ordered by the white house prior to major war announcements <sup>1</sup>


<sup>1</sup>http://home.xnet.com/~warinner/pizzacites.html

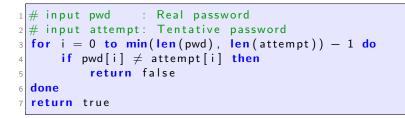






| pwd     | с | h | i | с | k | е | n |
|---------|---|---|---|---|---|---|---|
| attempt | с | h | е | е | s | е |   |


Execution time:

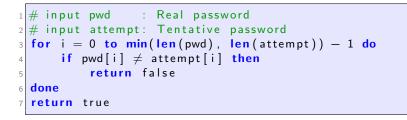






Execution time:  $\epsilon$ 






Execution time:  $\epsilon + \epsilon$ 





Execution time:  $\epsilon + \epsilon + \epsilon$ 





Execution time:  $\epsilon + \epsilon + \epsilon$ 

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

#### Timing attacks

 Principle: deduce private information from timing data (execution time)

Issues:

- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

 $\rightsquigarrow$  Non-trivial problem

#### Detection

Need to detect timing-leak vulnerabilities

#### Detection

#### Need to detect timing-leak vulnerabilities

#### We want formal guarantees $\rightarrow$ formal methods

#### Various methods:

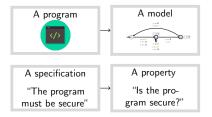
- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

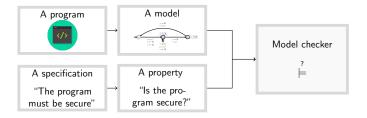


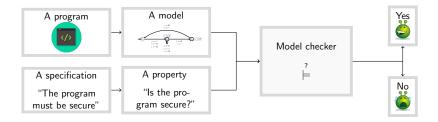
#### Detection

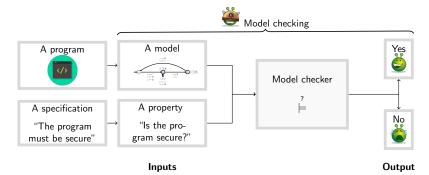
#### Need to detect timing-leak vulnerabilities

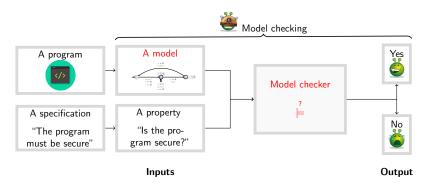
#### We want formal guarantees $\rightarrow$ formal methods

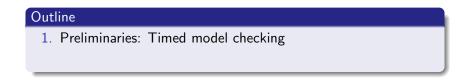

#### Various methods:

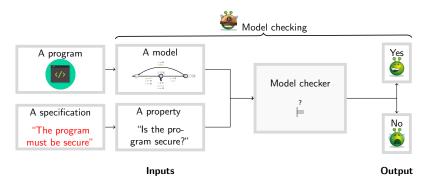

- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

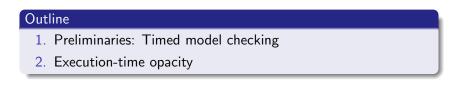




A specification "The program must be secure"














#### Preliminaries: (Parametric) Timed model checking

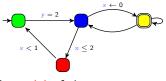
Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

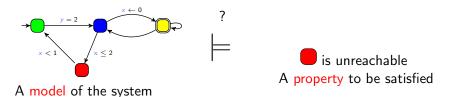
#### Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric timed automata


Execution-time opacity

Expiring ET-opacity problems

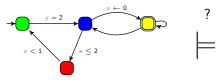
Untimed control

Conclusion & Perspectives


## Timed model checking



A model of the system


is unreachable A property to be satisfied

## Timed model checking



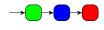
Question: does the model of the system satisfy the property?

## Timed model checking



is unreachable A property to be satisfied

A model of the system


Question: does the model of the system satisfy the property?

Yes

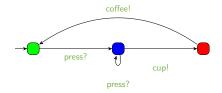




No



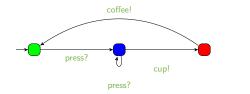
Counterexample


ty to be satisfied

[AD94]

Finite state automaton (sets of locations)




Finite state automaton (sets of locations and actions)



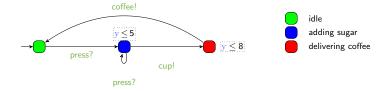
idle adding sugar delivering coffee [AD94]

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate



idle adding sugar delivering coffee


Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

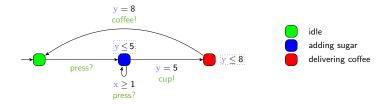
Can be compared to integer constants in invariants

Features

Location invariant: property to be verified to stay at a location



[AD94]


Finite state automaton (sets of locations and actions) augmented with a set X of clocks

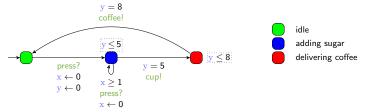
Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
 Transition guard: property to be verified to enable a transition




Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

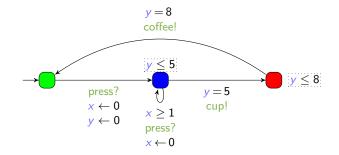
#### Features

- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition
- Clock reset: some of the clocks can be set to 0 along transitions



Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric timed automata

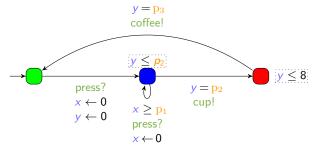
Execution-time opacity


Expiring ET-opacity problems

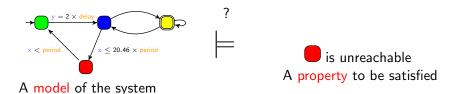
Untimed control

Conclusion & Perspectives

[AHV93]


Timed automaton (sets of locations, actions and clocks)




#### Parametric Timed Automaton (PTA)

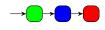
[AHV93]

- Timed automaton (sets of locations, actions and clocks) augmented with a set *P* of parameters
  - Unknown constants compared to a clock in guards and invariants



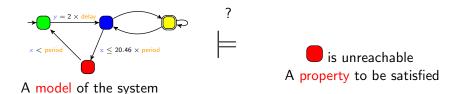
#### timed model checking




Question: does the model of the system satisfy the property?

Yes






No



Counterexample

#### Parametric timed model checking

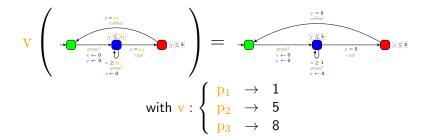


Question: for what values of the parameters does the model of the system satisfy the property?

Yes if...






 $2 \times \text{delay} > 20.46 \times \text{period}$ 

#### Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)

Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)



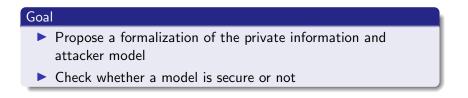
#### Outline

#### Preliminaries: (Parametric) Timed model checking

#### Execution-time opacity

Expiring ET-opacity problems

Untimed control


**Conclusion & Perspectives** 

#### Execution-time opacity

How to detect timing-leak vulnerabilities?

#### Execution-time opacity

How to detect timing-leak vulnerabilities?



#### Execution-time opacity

How to detect timing-leak vulnerabilities?

#### Goal

 Propose a formalization of the private information and attacker model

Check whether a model is secure or not

#### Contributions

|  | <b>ET-opacity</b> | definition, | decidability | results and | d experiments | [TOSEM22] |
|--|-------------------|-------------|--------------|-------------|---------------|-----------|
|--|-------------------|-------------|--------------|-------------|---------------|-----------|

- Expiring ET-opacity definition and decidability results [ICECCS23]
- ► Untimed control [FTSCS22]

#### Our attacker model

#### Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time



#### Our attacker model

#### Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time



#### Attacker goal

- Wants to deduce some private information based on these observations
  - $\rightarrow$  visit of a private location

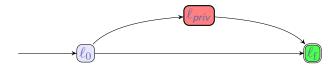
#### Outline

#### Preliminaries: (Parametric) Timed model checking

#### Execution-time opacity ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque duration

Expiring ET-opacity problems

Untimed control


Conclusion & Perspectives

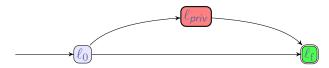
#### Formalization

Hypotheses:

[AS19][TOSEM22]

- $\blacktriangleright$  A start location  $\ell_0$  and an end location  $\ell_f$
- ► A special private location  $\ell_{priv}$




<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

#### Formalization

Hypotheses:

[AS19][TOSEM22]

- $\blacktriangleright$  A start location  $\ell_0$  and an end location  $\ell_f$
- ► A special private location  $\ell_{priv}$



#### Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs to  $\ell_f$  of duration d

- 1. one visiting  $\ell_{priv}$
- 2. one *not* visiting  $\ell_{priv}$

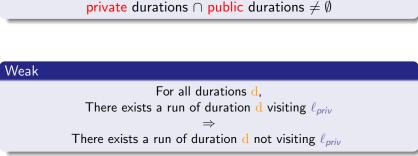
<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

#### Existential $(\exists)$

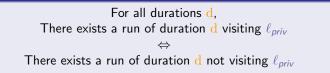
There exist a duration d and two runs of duration d, one visiting  $\ell_{priv}$ , one not visiting  $\ell_{priv}$ 

Existential  $(\exists)$ 

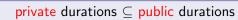
private durations  $\cap$  public durations  $\neq \emptyset$ 




private durations  $\cap$  public durations  $\neq \emptyset$ 



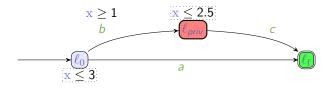

For all durations d, There exists a run of duration d visiting  $\ell_{priv}$  $\Rightarrow$ There exists a run of duration d not visiting  $\ell_{priv}$ 

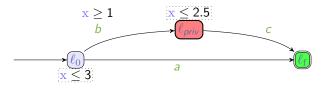

Existential  $(\exists)$ 



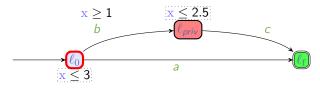
#### Full





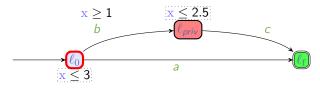




Weak

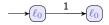
private durations = public durations

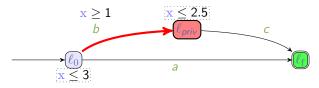




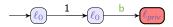

• There exist  $(at \ least)$  two runs of duration d = 2:

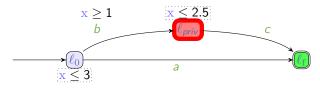



• There exist  $(at \ least)$  two runs of duration d = 2:

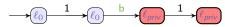

visiting  $\ell_{priv}$ 

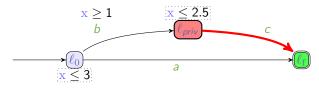
 $\rightarrow \ell_0$ 



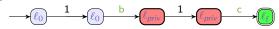


• There exist  $(at \ least)$  two runs of duration d = 2:

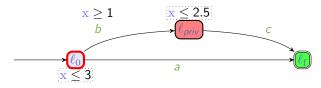




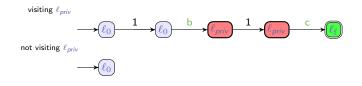


• There exist  $(at \ least)$  two runs of duration d = 2:

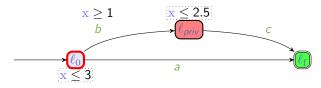




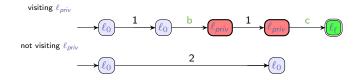


• There exist  $(at \ least)$  two runs of duration d = 2:

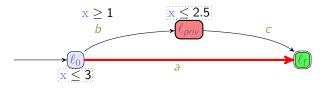




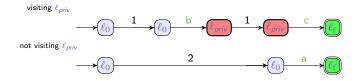


• There exist  $(at \ least)$  two runs of duration d = 2:

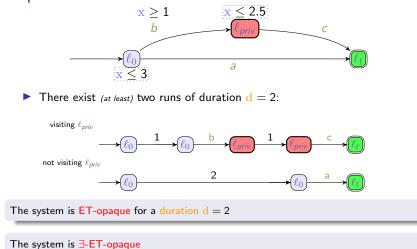


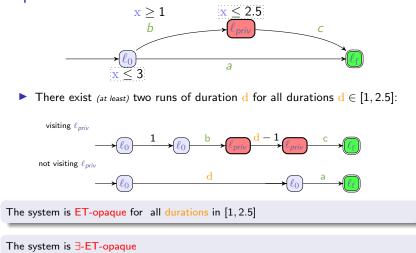


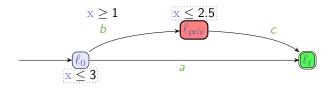


• There exist  $(at \ least)$  two runs of duration d = 2:





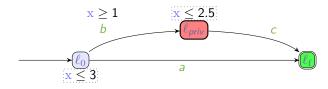


• There exist  $(at \ least)$  two runs of duration d = 2:




• There exist  $(at \ least)$  two runs of duration d = 2:

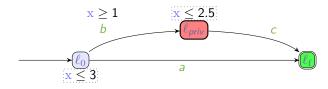








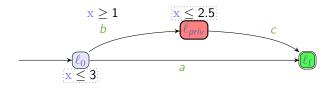

• There exist  $(at \ least)$  two runs of duration d for all durations  $d \in [1, 2.5]$ 


The system is  $\exists$ -ET-opaque



• There exist (at least) two runs of duration d for all durations  $d \in [1, 2.5]$ 

#### The system is ∃-ET-opaque

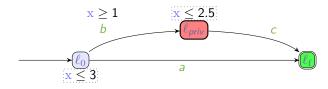

 private durations are [1, 2.5] public durations are [0, 3]



• There exist  $(at \ least)$  two runs of duration d for all durations  $d \in [1, 2.5]$ 

#### The system is ∃-ET-opaque

- private durations are [1, 2.5]
  public durations are [0, 3]
- ▶ private durations ⊆ public durations



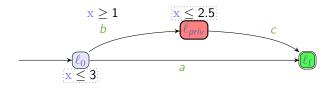

• There exist  $(at \ least)$  two runs of duration d for all durations  $d \in [1, 2.5]$ 

The system is ∃-ET-opaque

- private durations are [1, 2.5] public durations are [0, 3]
- private durations  $\subseteq$  public durations

The system is weakly ET-opaque




• There exist (at least) two runs of duration d for all durations  $d \in [1, 2.5]$ 

The system is ∃-ET-opaque

- private durations are [1, 2.5] public durations are [0, 3]
- private durations  $\subseteq$  public durations

The system is weakly ET-opaque

• private durations  $\neq$  public durations



• There exist (at least) two runs of duration d for all durations  $d \in [1, 2.5]$ 

The system is ∃-ET-opaque

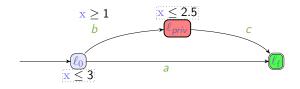
- private durations are [1, 2.5]
  public durations are [0, 3]
  private durations C public durations
- private durations  $\subseteq$  public durations

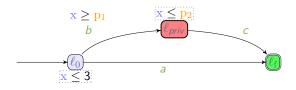
The system is weakly ET-opaque

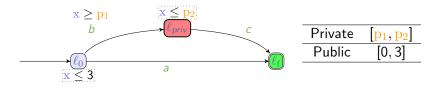
• private durations  $\neq$  public durations

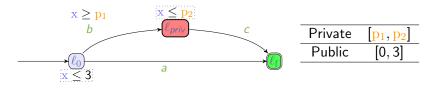
The system is *not* fully ET-opaque

## Outline

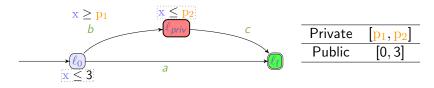

Preliminaries: (Parametric) Timed model checking


Execution-time opacity ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque durations


Expiring ET-opacity problems


Untimed control

Conclusion & Perspectives





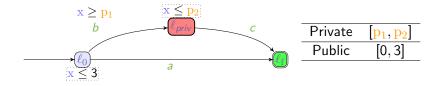




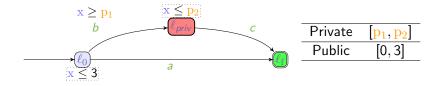

| <b>ET</b> -opacity notion | Private            | Public | Answer |
|---------------------------|--------------------|--------|--------|
| $p_1 =$                   | $1 \wedge p_2 = 2$ | 2.5    |        |
| Ξ                         |                    |        |        |
| weak                      | [1, 2.5]           | [0, 3] |        |
| full                      |                    |        | ×      |



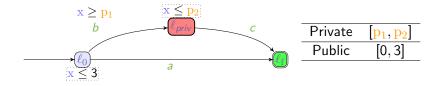
| ET-opacity notion | Private                     | Public | Answer                                       |
|-------------------|-----------------------------|--------|----------------------------------------------|
| $p_1 =$           | $1 \wedge p_2 = 2$          | 2.5    |                                              |
| ∃<br>weak<br>full | [1, 2.5]                    | [0, 3] |                                              |
|                   | $= 0 \wedge \mathbf{p}_2 =$ | 3      | ~                                            |
| ∃<br>weak<br>full | [0,3]                       | [0,3]  | $\checkmark$<br>$\checkmark$<br>$\checkmark$ |


## Two classes of parametric problems

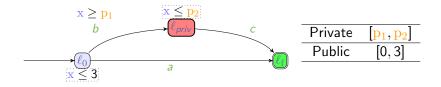
#### p-Emptiness problem


Decide the emptiness of the set of parameter valuations v s.t.  $v(\mathcal{P})$  is ET-opaque

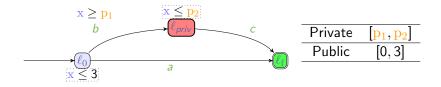
#### p-Synthesis problem


Synthesize the set of parameter valuations v s. t.  $v(\mathcal{P})$  is ET-opaque




| ET-opacity notion | E | Weak | Full |
|-------------------|---|------|------|
| p-Emptiness       |   |      |      |
| p-Synthesis       |   |      |      |
|                   |   |      |      |
|                   |   |      |      |
|                   |   |      |      |
|                   |   |      |      |
|                   |   |      |      |
|                   |   |      |      |




| ET-opacity notion | Ξ     | Weak  | Full  |
|-------------------|-------|-------|-------|
| p-Emptiness       | ×(∃v) | ×(∃v) | ×(∃v) |
| p-Synthesis       |       |       |       |
|                   |       |       |       |
|                   |       |       |       |
|                   |       |       |       |
|                   |       |       |       |
|                   |       |       |       |
|                   |       |       |       |



| ET-opacity notion | Э                       | Weak  | Full  |
|-------------------|-------------------------|-------|-------|
| p-Emptiness       | ×(∃v)                   | ×(∃v) | ×(∃v) |
| p-Synthesis       | $0 \le p_1 \le 3$       |       |       |
|                   | $\wedge \ p_1 \leq p_2$ |       |       |
|                   |                         |       |       |



| ET-opacity notion | Э                    | Weak                                             | Full  |
|-------------------|----------------------|--------------------------------------------------|-------|
| p-Emptiness       | ×(∃v)                | ×(∃v)                                            | ×(∃v) |
| p-Synthesis       | $0 \le p_1 \le 3$    | $0 \leq \mathbf{p}_1 \wedge \mathbf{p}_2 \leq 3$ |       |
|                   | $\land p_1 \leq p_2$ | $\wedge p_1 \leq p_2$                            |       |
|                   | P2                   | P2                                               |       |
|                   |                      |                                                  |       |
|                   |                      |                                                  |       |
|                   |                      |                                                  |       |
|                   | P1                   | P1                                               |       |



| ET-opacity notion | Ξ                    | Weak                                             | Full                                 |
|-------------------|----------------------|--------------------------------------------------|--------------------------------------|
| p-Emptiness       | ×(∃v)                | ×(∃v)                                            | ×(∃v)                                |
| p-Synthesis       | $0 \leq p_1 \leq 3$  | $0 \leq \mathbf{p_1} \wedge \mathbf{p_2} \leq 3$ | $\mathbf{p_1}=0\wedge\mathbf{p_2}=3$ |
|                   | $\land p_1 \leq p_2$ | $\land p_1 \leq p_2$                             |                                      |
|                   | P2                   | P2                                               |                                      |

# Decidability results for ET-opacity

|                     |         | ∃-ET-opaque  | weakly ET-   | fully ET-    |
|---------------------|---------|--------------|--------------|--------------|
|                     |         |              | opaque       | opaque       |
| Decision            | TA      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| <i>p</i> -emptiness | L/U-PTA | $\checkmark$ | ×            | ×            |
| p-cmptiness         | PTA     | ×            | ×            | ×            |
| <i>p</i> -synthesis | L/U-PTA | ×            | ×            | ×            |
| <i>p</i> -synthesis | ΡΤΑ     | ×            | ×            | ×            |

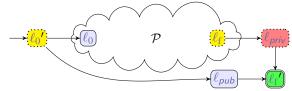
- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 7)

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

# Decidability results for ET-opacity

|                      |         | ∃-ET-opaque  | weakly ET-   | fully ET-    |
|----------------------|---------|--------------|--------------|--------------|
|                      |         |              | opaque       | opaque       |
| Decision             | ТА      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| <i>p</i> -emptiness  | L/U-PTA | $\checkmark$ | ×            | ×            |
| <i>p</i> -emptiliess | ΡΤΑ     | ×            | ×            | ×            |
| <i>p</i> -synthesis  | L/U-PTA | ×            | ×            | ×            |
| <i>p</i> -synthesis  | ΡΤΑ     | ×            | ×            | ×            |

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 7)


<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of ∃-ET-opacity *p*-emptiness)

Given  $\mathcal{P}$ , the mere existence of a parameter valuation v s.t.  $v(\mathcal{P})$  $\exists$ -ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs



Remark: L/U-PTA is a decidable subclass

## Outline

#### Preliminaries: (Parametric) Timed model checking

#### Execution-time opacity

ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque durations

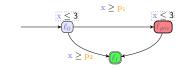
Expiring ET-opacity problems

Untimed control

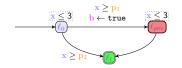
Conclusion & Perspectives

# Experiments: Computing ET-opaque durations

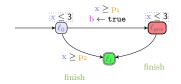
- Benchmark library + Library of Java programs<sup>2</sup>
  - Manually translated to PTAs
  - ► User-input variables → (non-timing) parameters
- Algorithms
  - 1. "Is the TA ET-opaque for all execution times?"
  - 2. "Synthesize parameter valuations and durations ensuring ET-opacity of a given PTA"


<sup>&</sup>lt;sup>2</sup>https://github.com/Apogee-Research/STAC/

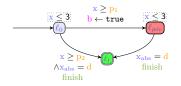
# Experiments: Computing ET-opaque durations


- Benchmark library + Library of Java programs<sup>2</sup>
  - Manually translated to PTAs
  - ► User-input variables → (non-timing) parameters
- Algorithms
  - 1. "Is the TA ET-opaque for all execution times?"
  - 2. "Synthesize parameter valuations and durations ensuring ET-opacity of a given PTA"
- $\blacktriangleright \text{ Problems are undecidable} \rightarrow \text{best-effort approach}$
- Algorithms based on parameter synthesis



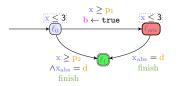

<sup>&</sup>lt;sup>2</sup>https://github.com/Apogee-Research/STAC/

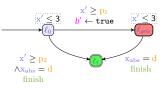



1. Add a Boolean flag b



- 1. Add a Boolean flag b
- 2. Add a synchronization action finish





- 1. Add a Boolean flag  $\mathbf{b}$
- 2. Add a synchronization action finish
- 3. Measure the (parametric) duration to  $\ell_{\rm f}$

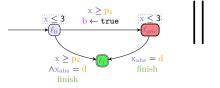


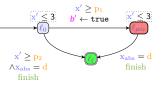
- 1. Add a Boolean flag b
- 2. Add a synchronization action finish
- 3. Measure the (parametric) duration to  $\ell_{\rm f}$
- 4. Perform self-composition

(a synchronization on shared actions of the PTA with a copy of itself)






# Applying reachability-synthesis


Synthesize all parameter valuations (including d) with a particular reachable state:

$$\blacktriangleright$$
  $\ell_{\rm f}$  with  $b =$ true

• 
$$\ell_{\rm f}$$
 with  $b' = {\tt false}$ 

 $(\ell_{\rm f}, {\rm b} = {\tt true}) \qquad \qquad (\ell_{\rm f}, {\rm b}' = {\tt false})$ 





Formal proof of correctness: see [TOSEM22]

### Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

# Expiring ET-opacity

How to deal with outdated secrets? e.g., cache values, status of the memory, ...



#### Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value) [Amm+21]

# Expiring ET-opacity

#### Assumption

Knowing an expired secret is equivalent to not knowing a secret

|                      | Secret runs                           | Non-secret runs                      |
|----------------------|---------------------------------------|--------------------------------------|
| ET-opacity           | Runs visiting the private lo-         | Runs not visiting the pri-           |
|                      | cation                                | vate location                        |
|                      | (= private runs)                      | (= public runs)                      |
| expiring-ET-opacity  | Private runs with $\ell_{priv}$ visit | (i) Public runs and                  |
| expiring-L r-opacity | $\leq \Delta$ before the system       | (ii) Private runs with $\ell_{priv}$ |
|                      | completion                            | visit > $\Delta$ before the system   |
|                      |                                       | completion                           |

<sup>[</sup>ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

Three levels of

**ET-opacity** 



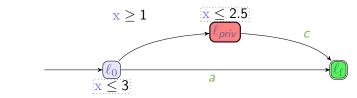




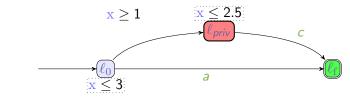
 $private \ durations = public \ durations$ 

# Three levels of expiring ET-opacity

#### Existential $(\exists)$ expiring


secret durations  $\cap$  non-secret durations  $\neq \emptyset$ 

Weak expiring

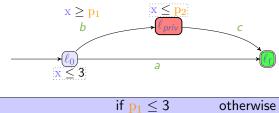

secret durations  $\subseteq$  non-secret durations

#### Full expiring

secret durations = non-secret durations

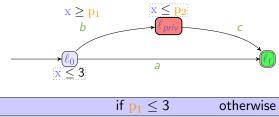


| ET-opacity notion                                                                                                    | Secret  | Non-secret             | Answer                                   |
|----------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------------------------------------|
| ∃<br>weak<br>full                                                                                                    | [1,2.5] | [0,3]                  | $\checkmark$<br>$\checkmark$<br>$\times$ |
| $egin{array}{ccc} \exists \mbox{-exp.} & & \\ \Delta = 1 & & \mbox{weak-exp.} & \\ & & \mbox{full-exp.} \end{array}$ | [1,2.5] | $(2, 2.5] \cup [0, 3]$ | $\checkmark$<br>$\checkmark$<br>$\times$ |



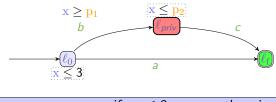

| ET-opaci        | ty notion | Secret   | Non-secret                                           | Answer |
|-----------------|-----------|----------|------------------------------------------------------|--------|
|                 | Э         |          |                                                      |        |
|                 | weak      | [1, 2.5] | [0, 3]                                               |        |
|                 | full      |          |                                                      | ×      |
|                 | ∃-exp.    | [1, 2.5] |                                                      |        |
| $\Delta = 1$    | weak-exp. |          | $(2,2.5]\cup [0,3]$                                  |        |
|                 | full-exp. |          |                                                      | ×      |
|                 | ∃-exp.    |          |                                                      |        |
| $\Delta = 1.25$ | weak-exp. | [1, 2.5] | <b>(</b> 2.25, 2.5 <b>]</b> ∪ <b>[</b> 0, 3 <b>]</b> |        |
|                 | full-exp. |          |                                                      | ×      |




| Secret     | $[\mathbf{p}_1, min(\Delta + 3, \mathbf{p}_2)]$ | Ø                      |
|------------|-------------------------------------------------|------------------------|
| Non-secret | $(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$   | $\emptyset \cup [0,3]$ |

| ET-opacity notion        | Weak | Full |
|--------------------------|------|------|
| (p+∆)-Emptiness          |      |      |
| (p+ $\Delta$ )-Synthesis |      |      |




|            | If $\mathrm{p}_1 \leq 3$                                 | otherwise              |
|------------|----------------------------------------------------------|------------------------|
| Secret     | $[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$         | Ø                      |
| Non-secret | $(\underline{p_1} + \Delta, \underline{p_2}] \cup [0,3]$ | $\emptyset \cup [0,3]$ |

| ET-opacity notion        | Weak  | Full  |
|--------------------------|-------|-------|
| (p+∆)-Emptiness          | ×(∃v) | ×(∃v) |
| (p+ $\Delta$ )-Synthesis |       |       |



|            | If $\mathrm{p}_1 \leq 3$                         | otherwise              |
|------------|--------------------------------------------------|------------------------|
| Secret     | $[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$ | Ø                      |
| Non-secret | $(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$    | $\emptyset \cup [0,3]$ |

| ET-opacity notion        | Weak                                                                                                          | Full  |
|--------------------------|---------------------------------------------------------------------------------------------------------------|-------|
| (p+∆)-Emptiness          | ×(∃v)                                                                                                         | ×(∃v) |
| (p+ $\Delta$ )-Synthesis | $\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$ |       |



|            | $if \; \mathbf{p_1} \leq 3$                              | otherwise              |
|------------|----------------------------------------------------------|------------------------|
| Secret     | $[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$         | Ø                      |
| Non-secret | $(\underline{p_1} + \Delta, \underline{p_2}] \cup [0,3]$ | $\emptyset \cup [0,3]$ |

| ET-opacity notion        | Weak                                                                                                          | Full                                                                                                                 |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| (p+∆)-Emptiness          | ×(∃v)                                                                                                         | ×(∃v)                                                                                                                |  |
| (p+ $\Delta$ )-Synthesis | $\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$ | $\mathbf{p}_1 = 0  \wedge  (  (\Delta \leq 3 \land 3 \leq \mathbf{p}_2 \leq \Delta + 3) \ \lor (\mathbf{p}_2 = 3) )$ |  |

# Decidability results for expiring-ET-opacity

|                                            |         | weakly<br>expiring-<br>ET-opaque | fully<br>expiring-<br>ET-opaque |
|--------------------------------------------|---------|----------------------------------|---------------------------------|
| $\Delta$ -emptiness<br>$\Delta$ -synthesis | ТА      |                                  | √<br>?                          |
| $(p + \Delta)$ -emptiness                  | L/U-PTA | ×                                | ×                               |
| $(p + \Delta)$ -emptiness                  | РТА     | ×                                | ×                               |
| $(p + \Delta)$ -synthesis                  | L/U-PTA | ×                                | ×                               |
| $(p + \Delta)$ -synthesis                  | РТА     | ×                                | ×                               |

∃-expiring ET-opacity was left as a future work.

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

<sup>[</sup>ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

# Decidability results for expiring-ET-opacity

|                                            |         | weakly<br>expiring-<br>ET-opaque | fully<br>expiring-<br>ET-opaque |
|--------------------------------------------|---------|----------------------------------|---------------------------------|
| $\Delta$ -emptiness<br>$\Delta$ -synthesis | ТА      |                                  | √<br>?                          |
| $(p + \Delta)$ -emptiness                  | L/U-PTA | ×                                | ×                               |
| $(p + \Delta)$ -emptiliess                 | PTA     | ×                                | ×                               |
| $(p + \Delta)$ -synthesis                  | L/U-PTA | ×                                | ×                               |
| $(p + \Delta)$ -synthesis                  | ΡΤΑ     | ×                                | ×                               |

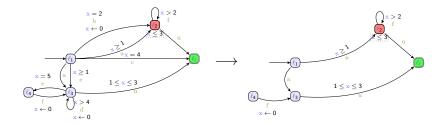
∃-expiring ET-opacity was left as a future work.

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in Manuscript, Chapter 8)

<sup>[</sup>ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

## Outline

Preliminaries: (Parametric) Timed model checking


Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

## Untimed control



- Restrict the behavior of the system to ensure ET-opacity
- Development of an open-source tool strategFTO (~ 1200 lines of code, Java)

Enumeration of transition sets

<sup>[</sup>FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: FTSCS (2022). ACM, 2022

## Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

# Conclusion

#### Context: vulnerability by timing-attacks

Attacker model: observability of the global execution time

 Goal: avoid leaking information on whether some discrete state has been visited

#### Several problems studied for timed automata

Mostly decidable

#### Extension to parametric timed automata

- Quickly undecidable
- One procedure for one synthesis problem
- Toolkit: IMITATOR
- Benchmarks: concurrent systems and Java programs

## Perspectives

#### Theoretical perspectives

- Existential version of expiring ET-opacity
- Δ-synthesis for full expiring ET-opacity

#### Algorihtmic perspectives

- Synthesis for weak and full ET-opacity
- Synthesis for expiring problems

#### Automatic translation of programs to PTAs

- Our translation required non-trivial creativity
  - $\rightarrow$  Preliminary translation with Petri nets including cache system

# References I

| [AD94]    | Rajeev Alur and David L. Dill. "A theory of timed automata". In: <i>TCS</i> 126 (Apr. 1994).                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [AHV93]   | Rajeev Alur, Thomas A. Henzinger, and<br>Moshe Y. Vardi. "Parametric real-time reasoning".<br>In: <i>STOC</i> (1993). ACM, 1993.                                                                 |
| [Amm+21]  | Ikhlass Ammar, Yamen El Touati, Moez Yeddes,<br>and John Mullins. "Bounded opacity for timed<br>systems". In: <i>Journal of Information Security and</i><br><i>Applications</i> 61 (Sept. 2021). |
| [AS19]    | Étienne André and Jun Sun. "Parametric Timed<br>Model Checking for Guaranteeing Timed Opacity".<br>In: <i>ATVA</i> (2019). LNCS. Springer, 2019.                                                 |
| [FTSCS22] | Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: <i>FTSCS</i> (2022). ACM, 2022.                                         |

### References II

[Hun+02]

Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. "Linear parametric model checking of timed automata". In: *Journal of Logic and Algebraic Programming* 52-53 (2002).

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM 31 (2022).

# Licensing

# Source of the graphics used I



Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley\_green\_alien\_big\_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley\_green\_alien\_big\_eyes.svg License: public domain

Title: Smiley green alien exterminate Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley\_green\_alien\_exterminate.svg License: public domain



Title: Piratey, vector version Author: Gustavb Source: https://commons.wikimedia.org/wiki/File:Piratey,\_vector\_version.svg License: CC by-sa

Title: Expired Author: RRZEicons Source: https://commons.wikimedia.org/wiki/File:Expired.svg License: CC by-sa

### License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons **Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)** 

(LTEX source available on demand)

Authors: Étienne André and Dylan Marinho



creativecommons.org/licenses/by-sa/4.0/