

SynCoP

April 22, 2023 Paris, France

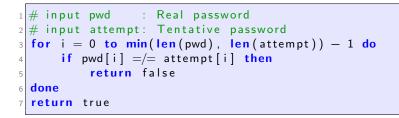
Execution-time opacity problems in (parametric) timed automata

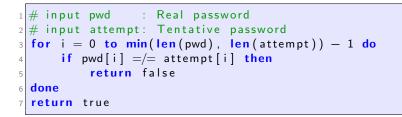
Dylan Marinho

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Join works with Étienne André, Engel Lefaucheux, Didier Lime, and Sun Jun

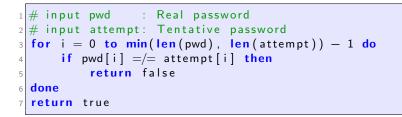
These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015) and the ANR research program BisoUS (ANR-22-CE48-0012).

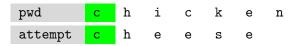

Context: timing attacks

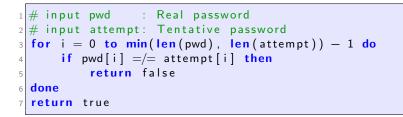

 Principle: deduce private information from timing data (execution time)

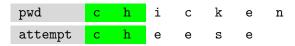
Issues:

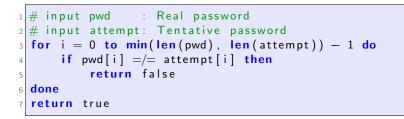
- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

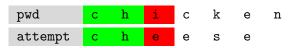

 \rightsquigarrow Non-trivial problem

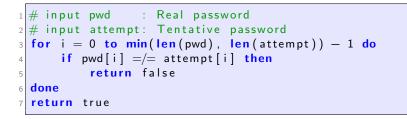



pwd	с	h	i	с	k	е	n
attempt	с	h	е	е	s	е	


Execution time:




Execution time: ϵ



Execution time: $\epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

Informal problems

Question: can we exhibit secure execution times?

Computation problem: Execution-time opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Informal problems

Question: can we exhibit secure execution times?

Computation problem: Execution-time opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the internal behavior, whatever (for all) execution times?

Further question: can we also tune internal timing constants to make the system resisting to timing attacks?

Synthesis problem: Execution-time opacity synthesis

Exhibit execution times and internal timing constants for which it is not possible to infer information on the internal behavior

Outline

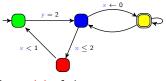
ET-opacity problems in timed automata

ET-opacity parametrization

Results

Perspectives

Outline

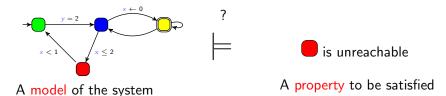

ET-opacity problems in timed automata Timed model checking and timed automata Execution-Time Opacity Problems Expiring-ET-Opacity Problems

ET-opacity parametrization

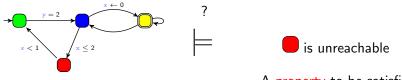
Results

Perspectives

Timed model checking



A model of the system


A property to be satisfied

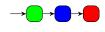
Timed model checking

Question: does the model of the system satisfy the property?

Timed model checking

A model of the system

A property to be satisfied


Question: does the model of the system satisfy the property?

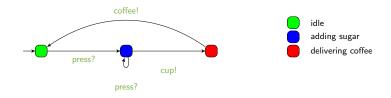
Yes

No


Counterexample

Finite state automaton (sets of locations)

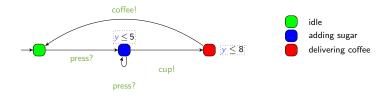
[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions)

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8

Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

Real-valued variables evolving linearly at the same rate


[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8

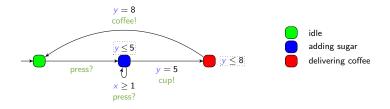
 Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants

Features

Location invariant: property to be verified to stay at a location

[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [AD94]

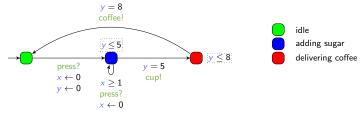
- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards

Features

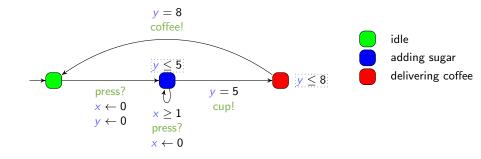
Location invariant: property to be verified to stay at a location

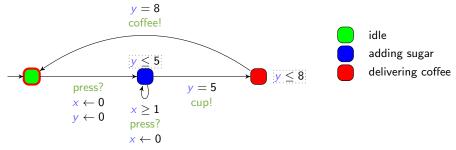
Transition guard: property to be verified to enable a transition

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

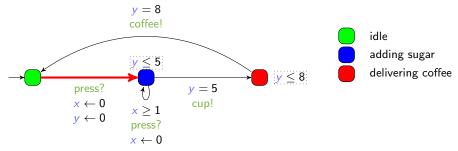
- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards


Features


- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition

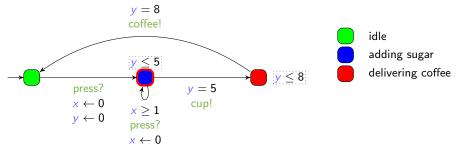
Clock reset: some of the clocks can be set to 0 along transitions

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304-3975(94)90010-8



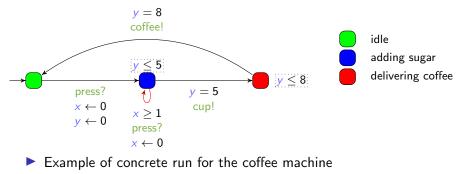
Example of concrete run for the coffee machine

Coffee with 2 doses of sugar

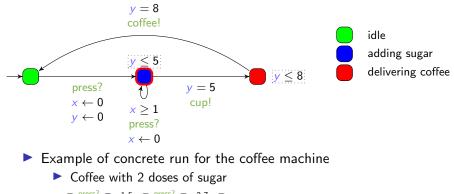

 $\begin{array}{c} x = & 0 \\ y = & 0 \end{array}$

Example of concrete run for the coffee machine

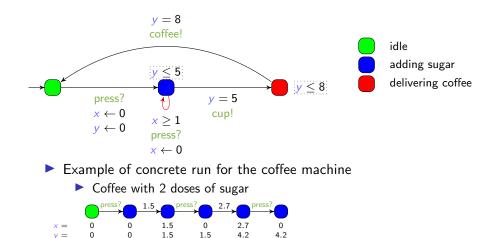
Coffee with 2 doses of sugar

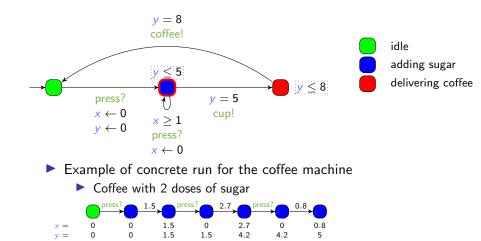


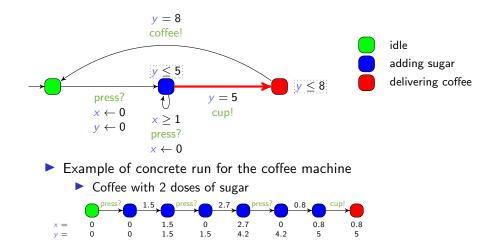
Example of concrete run for the coffee machine

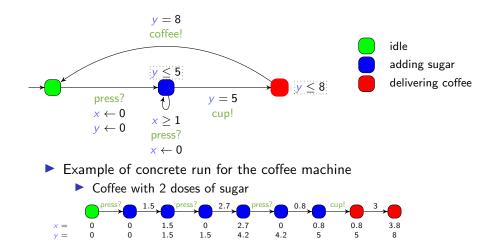

Coffee with 2 doses of sugar

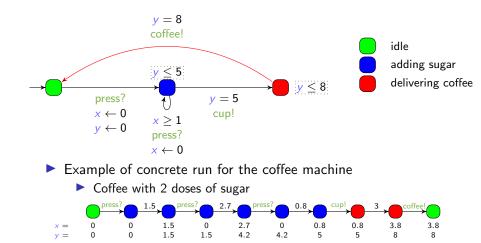





Coffee with 2 doses of sugar



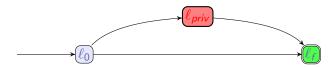




Outline

ET-opacity problems in timed automata Timed model checking and timed automata Execution-Time Opacity Problems Expiring-ET-Opacity Problems

ET-opacity parametrization


Results

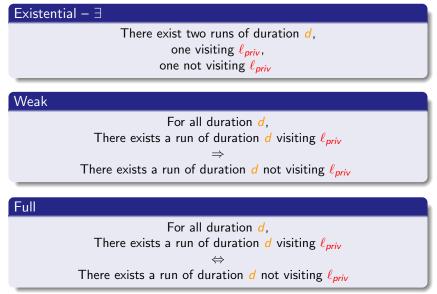
Perspectives

Formalization

Hypotheses:

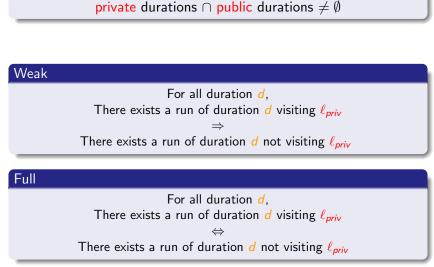
- A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}

Definition (execution-time opacity)


The system is **ET-opaque** for a duration d if there exist two runs to ℓ_f of duration d

- 1. one visiting ℓ_{priv}
- 2. one *not* visiting ℓ_{priv}

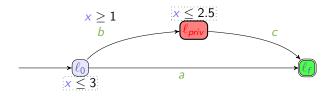
[AS19]

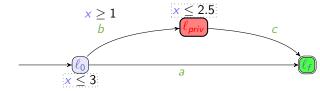

[[]AS19] Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7

Three levels of ET-opacity

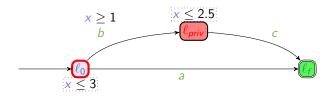
Three levels of ET-opacity

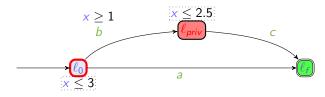
Existential $-\exists$


Three levels of ET-opacity



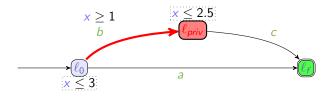
Weak


private durations \subseteq public durations

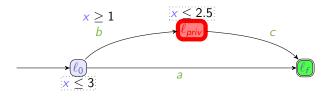

• There exist (at least) two runs of duration d = 2:

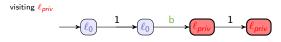
• There exist (at least) two runs of duration d = 2:

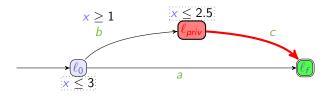
visiting *l_{priv}*

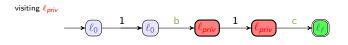


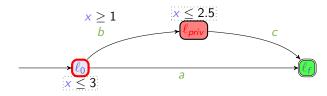
• There exist (at least) two runs of duration d = 2:

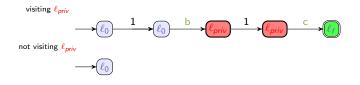


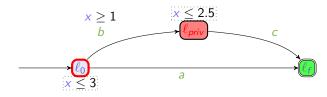

• There exist (at least) two runs of duration d = 2:

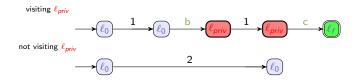


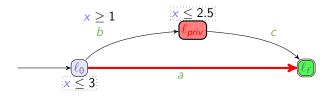


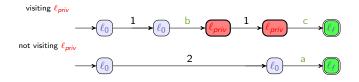

• There exist (at least) two runs of duration d = 2:

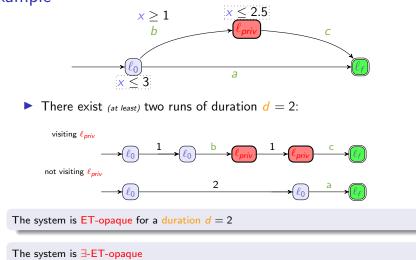


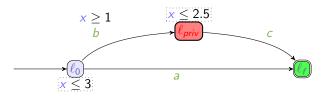

• There exist (at least) two runs of duration d = 2:

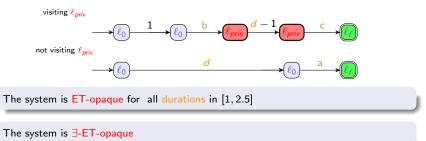


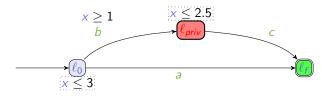

• There exist (at least) two runs of duration d = 2:




• There exist (at least) two runs of duration d = 2:



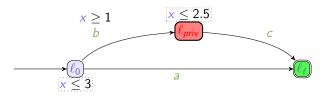

• There exist (at least) two runs of duration d = 2:



► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]:

• There exist $(at \ least)$ two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

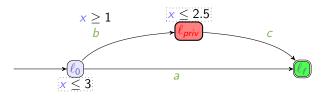


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

private execution times are [1, 2.5]
 public execution times are [0, 3]

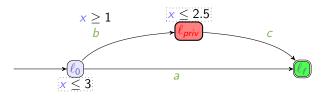


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5]
 public execution times are [0, 3]
- ▶ private durations ⊆ public durations

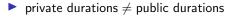

► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

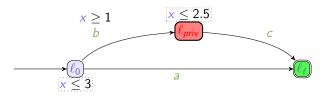
The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- private durations \subseteq public durations

The system is weakly ET-opaque


► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]


The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque

► There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

But,

- private execution times are [1, 2.5] public execution times are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque

• private durations \neq public durations

The system is not fully ET-opaque

Outline

ET-opacity problems in timed automata

Timed model checking and timed automata Execution-Time Opacity Problems Expiring-ET-Opacity Problems

ET-opacity parametrization

Results

Perspectives

Expiring ET-opacity

Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value)

	Secret runs	Non-secret runs	
ET-opacity	Runs visiting the private lo-	Runs not visiting the pri-	
	cation	vate location	
	(= private runs)	(= public runs)	
expiring-ET-opacity	Private runs with ℓ_{priv} visit	(i) Public runs and	
	$\leq \Delta$ before the system	(ii) Private runs with ℓ_{priv}	
	completion	visit > Δ before the system	
		completion	

Three levels of

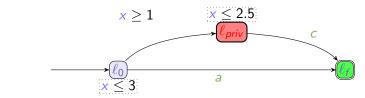
ET-opacity

 $\mathsf{private}\ \mathsf{durations}\subseteq\mathsf{public}\ \mathsf{durations}$

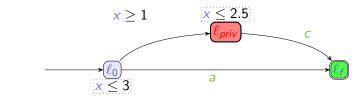
 ${\sf private \ durations} = {\sf public \ durations}$

Three levels of expiring ET-opacity

Existential–∃ expiring


secret durations \cap non-secret durations $\neq \emptyset$

Weak expiring


secret durations \subseteq non-secret durations

Full expiring

secret durations = non-secret durations

ET-opacity notion	Secret	Non secret	Answer
∃ weak full	[1,2.5]	[0,3]	\checkmark \checkmark \times
$egin{array}{ccc} \exists \mbox{-exp.} & & \\ \Delta = 1 & & \mbox{weak-exp.} & \\ & & \mbox{full-exp.} \end{array}$	[1,2.5]	$(2, 2.5] \cup [0, 3]$	 \times

ET-opacity notion		Secret	Non secret	Answer
∃ weak full				
		[1,2.5]	[0, 3]	
				×
$\Delta = 1$	∃-exp.			
	weak-exp.	[1, 2.5]	$(2, 2.5] \cup [0, 3]$	
	full-exp.			×
	∃-exp.			
$\Delta = 1.25$	weak-exp.	[1, 2.5]	(2.25, 2.5] ∪ [0, 3]	
	full-exp.			×

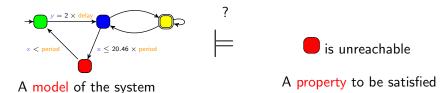
ET-opacity problems in timed automata

ET-opacity parametrization

Results

Perspectives

Outline

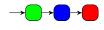

ET-opacity problems in timed automata

ET-opacity parametrization Parametric timed automata ET-opacity parametric problems

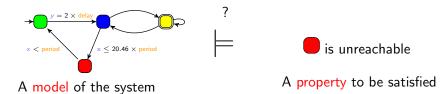
Results

Perspectives

timed model checking


Question: does the model of the system satisfy the property?

Yes

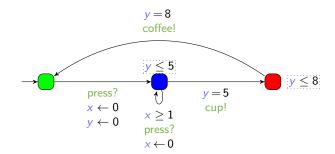


No

Counterexample

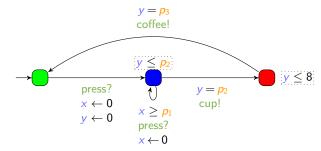
Parametric timed model checking

Question: for what values of the parameters does the model of the system satisfy the property?


Yes if...

 $2 \times \text{delay} > 20.46 \times \text{period}$

Timed Automaton (PTA)

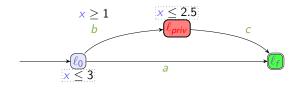

Timed automaton (sets of locations, actions and clocks)

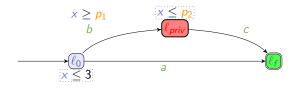
[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242

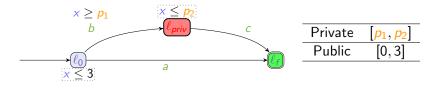
Parametric Timed Automaton (PTA)

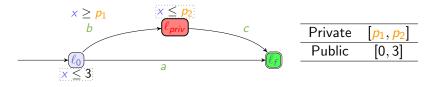
- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters [AHV93]
 - Unknown constants compared to a clock in guards and invariants

[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242

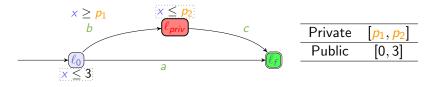

Outline


ET-opacity problems in timed automata


ET-opacity parametrization Parametric timed automata ET-opacity parametric problems

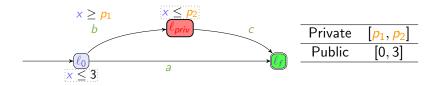

Results

Perspectives

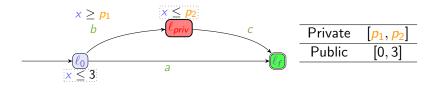


ET-opacity notion	Private	Public	Answer
$p_1 =$	$1 \wedge p_2 = 2$	2.5	
Ξ			
weak	[1, 2.5]	[0, 3]	
full			×

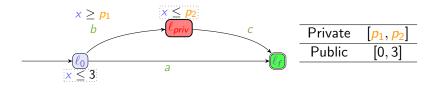
ET-opacity notion	Private	Public	Answer	
$p_1 =$	$1 \wedge p_2 = 2$	2.5		
Ξ				
weak	[1, 2.5]	[0, 3]		
full			×	
$p_1 = 0 \land p_2 = 3$				
Э				
weak	[0,3]	[0, 3]		
full				

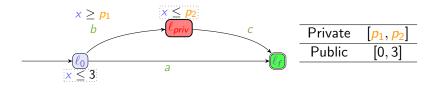

Two classes of parametric problems

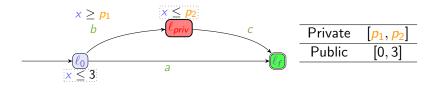
p-Emptiness problem


Is the set of parameter valuations ensuring the property empty?

p-Synthesis problem


Synthesize all the parameter valuations ensuring the property


ET-opacity notion	p-Emptiness	p-Synthesis
Ξ		
weak		
full		


ET-opacity notion	p-Emptiness	p-Synthesis
Ξ	×(∃v)	
weak	×(∃v)	
full	×(∃v)	

ET-opacity notion	p-Emptiness	p-Synthesis	
Ξ	×(∃v)	$0 \leq p_1 \leq 3 \qquad \land p_1 \leq p_2$	
weak	×(∃v)		
full	×(∃v)		

ET-opacity notion	p-Emptiness	p-Synthesis	
Ξ	×(∃v)	$0 \leq p_1 \leq 3$	$\land p_1 \leq p_2$
weak	×(∃v)	$0 \leq p_1 \wedge p_2 \leq 3$	$\land p_1 \leq p_2$
full	×(∃v)		

ET-opacity notion	p-Emptiness	p-Synthesis	
Ξ	×(∃v)	$0 \leq p_1 \leq 3 \qquad \land p_1 \leq p_2$	
weak	×(∃v)	$0 \leq p_1 \wedge p_2 \leq 3 \wedge p_1 \leq p_2$	
full	×(∃v)	$p_1 = 0 \land p_2 = 3$	

ET-opacity problems in timed automata

ET-opacity parametrization

Results

ET-opacity problems in timed automata

ET-opacity parametrization

Results ET-opacity Expiring ET-opacity

Summary of the results for ET-opacity [And+22]

		∃-ET-opaque	weakly ET-	fully ET-
			opaque	opaque
Decision	ТА	\checkmark	?	\checkmark
<i>p</i> -emptiness	L/U-PTA	\checkmark	?	×
<i>p</i> -emptiness	PTA	×	?	×
n ounthasis	L/U-PTA	×	?	Х
<i>p</i> -synthesis	ΡΤΑ	×	?	×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) $[\mathsf{BL09}]$

[[]BL09] Laura Bozzelli and Salvatore La Torre. "Decision problems for lower/upper bound parametric timed automata". In: Formal Methods in System Design 35.2 (2009), pp. 121–151. DOI: 10.1007/s10703-009-0074-0

[[]And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing timed opacity using parametric timed model checking". In: ACM Transactions on Software Engineering and Methodology 31.4 (Oct. 2022), pp. 1–36. DOI: 10.1145/3502851

ET-opacity problems in timed automata

ET-opacity parametrization

Results ET-opacity Expiring ET-opacity

Summary of the results for expiring-ET-opacity [ALM23]

		∃-expiring- ET-opaque	weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ -emptiness	ТА	?	\checkmark	\checkmark
Δ -synthesis	IA	?	\checkmark	?
$(p + \Delta)$ -emptiness	L/U-PTA	?	×	×
$(p + \Delta)$ -emptimess	PTA	?	×	×
$(p+\Delta)$ -synthesis	L/U-PTA	?	×	×
$(p - \Delta)$ -synthesis	PTA	?	×	×

[[]ALM23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (June 12–16, 2023). Ed. by Yamine Ait-Ameur and Ferhat Khendek. Accepted. Toulouse, France, 2023

ET-opacity problems in timed automata

ET-opacity parametrization

Results

Perspectives

Theory

- Some restricted problems remain open
 - e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

Promising subclass: U-PTAs (only upper-bound parameters)

Perspectives

Theory

- Some restricted problems remain open
 - e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

Promising subclass: U-PTAs (only upper-bound parameters)

Algorithmic and implementation

- Automatic translation of programs to timed automata
- Repairing a non ET-opaque system

References I

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. DOI: 10.1016/0304–3975(94)90010–8.

 [AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. DOI: 10.1145/167088.167242.

[ALM23]

Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (June 12–16, 2023). Ed. by Yamine Ait-Ameur and Ferhat Khendek. Accepted. Toulouse, France, 2023.

References II

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing timed opacity using parametric timed model checking". In: ACM Transactions on Software Engineering and Methodology 31.4 (Oct. 2022), pp. 1–36. DOI: 10.1145/3502851.

[AS19]

Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: *ATVA* (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7.

References III

[BL09]

Laura Bozzelli and Salvatore La Torre. "Decision problems for lower/upper bound parametric timed automata". In: *Formal Methods in System Design* 35.2 (2009), pp. 121–151. DOI: 10.1007/s10703-009-0074-0.