
ICS-CoE

April 10th, 2024
Palaiseau, France

Execution-time opacity problems
in (parametric) timed automata

Dylan Marinho, PhD

Télécom SudParis, Institut Polytechnique de Paris

Based on join works with Étienne André, Shapagat Bolat, Engel Lefaucheux, Didier Lime, and Sun Jun

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015)
and the ANR research program BisoUS (ANR-22-CE48-0012).

Motivation

▶ Real-time systems:
▶ Not only the functional correctness but also the time to answer

is important

▶ Failures (in correctness or timing) may result in dramatic
consequences

2 / 48

Motivation

▶ Critical Real-time systems:
▶ Not only the functional correctness but also the time to answer

is important
▶ Failures (in correctness or timing) may result in dramatic

consequences

2 / 48

Motivation

▶ Critical Real-time systems:
▶ Not only the functional correctness but also the time to answer

is important
▶ Failures (in correctness or timing) may result in dramatic

consequences

2 / 48

General context: side-channel attacks

▶ Threats to a system using non-algorithmic weaknesses

▶ Cache attacks
▶ Electromagnetic attacks
▶ Power attacks
▶ Acoustic attacks
▶ Timing attacks
▶ Temperature attacks
▶ etc.

▶ Example
▶ Number of pizzas (and order time) ordered by the white house

prior to major war announcements

3 / 48

General context: side-channel attacks

▶ Threats to a system using non-algorithmic weaknesses
▶ Cache attacks
▶ Electromagnetic attacks
▶ Power attacks
▶ Acoustic attacks
▶ Timing attacks
▶ Temperature attacks
▶ etc.

▶ Example
▶ Number of pizzas (and order time) ordered by the white house

prior to major war announcements

3 / 48

General context: side-channel attacks

▶ Threats to a system using non-algorithmic weaknesses
▶ Cache attacks
▶ Electromagnetic attacks
▶ Power attacks
▶ Acoustic attacks
▶ Timing attacks
▶ Temperature attacks
▶ etc.

▶ Example
▶ Number of pizzas (and order time) ordered by the white house

prior to major war announcements 1

1http://home.xnet.com/~warinner/pizzacites.html
3 / 48

http://home.xnet.com/~warinner/pizzacites.html

General context: side-channel attacks

▶ Threats to a system using non-algorithmic weaknesses
▶ Cache attacks
▶ Electromagnetic attacks
▶ Power attacks
▶ Acoustic attacks
▶ Timing attacks
▶ Temperature attacks
▶ etc.

▶ Example
▶ Number of pizzas (and order time) ordered by the white house

prior to major war announcements 1

1http://home.xnet.com/~warinner/pizzacites.html
3 / 48

http://home.xnet.com/~warinner/pizzacites.html

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ

+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ

+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min (l en (pwd) , l en (attempt)) − 1 do
4 i f pwd [i] ̸= attempt [i] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

4 / 48

Timing attacks

▶ Principle: deduce private information from timing data
(execution time)

Issues:

▶ May depend on the implementation (or, even worse, be
introduced by the compiler)

▶ A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

; Non-trivial problem

5 / 48

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

▶ Various methods:
▶ Abstract interpretation
▶ Static analysis
▶ Model checking
▶ Theorem proving

6 / 48

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

▶ Various methods:
▶ Abstract interpretation
▶ Static analysis
▶ Model checking
▶ Theorem proving

6 / 48

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

▶ Various methods:
▶ Abstract interpretation
▶ Static analysis
▶ Model checking
▶ Theorem proving

6 / 48

Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Outline

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Outline

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity

7 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

8 / 48

Outline

Preliminaries: (Parametric) Timed model checking
Timed model checking and Timed automata
Parametric timed model checking and Parametric timed
automata

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

9 / 48

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=

is unreachable
A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

10 / 48

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

10 / 48

Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No

Counterexample

10 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations)

and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

idle

adding sugar

delivering coffee

11 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations and actions)

augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

11 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

11 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location

▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

y≤ 5

y ≤ 8
press?

x← 0
y← 0

y = 5

cup!

x ≥ 1

press?

x← 0

y = 8

coffee!

idle

adding sugar

delivering coffee

11 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition

▶ Clock reset: some of the clocks can be set to 0 along
transitions

y≤ 5

y ≤ 8
press?

x← 0
y← 0

y = 5
cup!

x ≥ 1
press?

x← 0

y = 8
coffee!

idle

adding sugar

delivering coffee

11 / 48

Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate
▶ Can be compared to integer constants in invariants and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

y≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

idle

adding sugar

delivering coffee

11 / 48

Outline

Preliminaries: (Parametric) Timed model checking
Timed model checking and Timed automata
Parametric timed model checking and Parametric timed
automata

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

12 / 48

Parametric

Timed Automaton (PTA)
[AHV93]

▶ Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters
▶ Unknown constants compared to a clock in guards and

invariants

y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y =5
cup!

x ≥ 1
press?
x← 0

y =8
coffee!

13 / 48

Parametric Timed Automaton (PTA)
[AHV93]

▶ Timed automaton (sets of locations, actions and clocks)
augmented with a set P of parameters
▶ Unknown constants compared to a clock in guards and

invariants

y ≤ p2
y ≤ 8

press?
x ← 0
y ← 0

y = p2

cup!
x ≥ p1

press?
x← 0

y = p3

coffee!

13 / 48

Parametric

timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes

if. . .

No

Counterexample

14 / 48

Parametric timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: for what values of the parameters does the model
of the system satisfy the property?

Yes if. . .

No

delay

period

2× delay > 20.46× period

14 / 48

Valuation of a PTA = TA

▶ Given a PTA P and a parameter valuation v,
v(P) is the TA where each parameter p is valuated by v(p)

v

 y ≤ p2

y ≤ 8
press?
x ← 0
y ← 0

y =p2
cup!

x ≥ p1
press?

x← 0

y =p3
coffee!

 = y ≤ 5

y ≤ 8
press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

with v :

p1 → 1
p2 → 5
p3 → 8

15 / 48

Valuation of a PTA = TA

▶ Given a PTA P and a parameter valuation v,
v(P) is the TA where each parameter p is valuated by v(p)

v

 y ≤ p2

y ≤ 8
press?
x ← 0
y ← 0

y =p2
cup!

x ≥ p1
press?

x← 0

y =p3
coffee!

 = y ≤ 5

y ≤ 8
press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

with v :

p1 → 1
p2 → 5
p3 → 8

15 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

16 / 48

Execution-time opacity

▶ How to detect timing-leak vulnerabilities?

Goal

▶ Propose a formalization of the private information and
attacker model

▶ Check whether a model is secure or not

Contributions

▶ ET-opacity definition, decidability results and experiments [TOSEM22]

▶ Expiring ET-opacity definition and decidability results [ICECCS23]

▶ Untimed control [FTSCS22]

17 / 48

Execution-time opacity

▶ How to detect timing-leak vulnerabilities?

Goal

▶ Propose a formalization of the private information and
attacker model

▶ Check whether a model is secure or not

Contributions

▶ ET-opacity definition, decidability results and experiments [TOSEM22]

▶ Expiring ET-opacity definition and decidability results [ICECCS23]

▶ Untimed control [FTSCS22]

17 / 48

Execution-time opacity

▶ How to detect timing-leak vulnerabilities?

Goal

▶ Propose a formalization of the private information and
attacker model

▶ Check whether a model is secure or not

Contributions

▶ ET-opacity definition, decidability results and experiments [TOSEM22]

▶ Expiring ET-opacity definition and decidability results [ICECCS23]

▶ Untimed control [FTSCS22]

17 / 48

Our attacker model

Attacker capabilities

▶ Has access to the model (white box)

▶ Can only observe the total execution time

Attacker goal

▶ Wants to deduce some private information based on these
observations
→ visit of a private location

18 / 48

Our attacker model

Attacker capabilities

▶ Has access to the model (white box)

▶ Can only observe the total execution time

Attacker goal

▶ Wants to deduce some private information based on these
observations
→ visit of a private location

18 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Computing ET-opaque durations

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

19 / 48

Formalization

Hypotheses: [AS19][TOSEM22]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0

ℓpriv

ℓf

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs
to ℓf of duration d

1. one visiting ℓpriv

2. one not visiting ℓpriv

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

20 / 48

Formalization

Hypotheses: [AS19][TOSEM22]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0

ℓpriv

ℓf

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs
to ℓf of duration d

1. one visiting ℓpriv

2. one not visiting ℓpriv

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

20 / 48

Three levels of ET-opacity

Existential (∃)
There exist a duration d and two runs of duration d,

one visiting ℓpriv ,
one not visiting ℓpriv

Weak

For all durations d,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all durations d,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

21 / 48

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations ̸= ∅

Weak

For all durations d,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all durations d,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

21 / 48

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations ̸= ∅

Weak

For all durations d,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all durations d,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

21 / 48

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations ̸= ∅

Weak

For all durations d,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all durations d,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv

21 / 48

Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations ̸= ∅

Weak

private durations ⊆ public durations

Full

private durations = public durations

21 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0

ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0

ℓpriv ℓpriv ℓf

1

b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv

ℓpriv ℓf

1 b

1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv

ℓf

1 b 1

c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0

ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0

ℓf

2

a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ET-opaque for a duration d = 2

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

22 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b d− 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
d a

The system is ET-opaque for all durations in [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

23 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

23 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

24 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

24 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

24 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

24 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d for all durations d ∈ [1, 2.5]

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque

24 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Computing ET-opaque durations

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

25 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

26 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

26 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1, p2]

Public [0, 3]

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√

26 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1, p2]

Public [0, 3]

ET-opacity notion Private Public Answer
p1 = 1 ∧ p2 = 2.5

∃
[1, 2.5] [0, 3]

√

weak
√

full ×

∃
[0, 3] [0, 3]

√

weak
√

full
√

26 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1, p2]

Public [0, 3]

ET-opacity notion Private Public Answer
p1 = 1 ∧ p2 = 2.5

∃
[1, 2.5] [0, 3]

√

weak
√

full ×
p1 = 0 ∧ p2 = 3

∃
[0, 3] [0, 3]

√

weak
√

full
√

26 / 48

Two classes of parametric problems

p-Emptiness problem

Decide the emptiness of the set of parameter valuations v
s. t. v(P) is ET-opaque

p-Synthesis problem

Synthesize the set of parameter valuations v
s. t. v(P) is ET-opaque

27 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness
p-Synthesis

0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3
∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

28 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis

0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3
∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

28 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3

0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2

∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

28 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3

p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

28 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c Private [p1,p2]

Public [0, 3]

ET-opacity notion ∃ Weak Full
p-Emptiness ×(∃v) ×(∃v) ×(∃v)
p-Synthesis 0 ≤ p1 ≤ 3 0 ≤ p1 ∧ p2 ≤ 3 p1 = 0 ∧ p2 = 3

∧ p1 ≤ p2 ∧ p1 ≤ p2

p1

p2

p1

p2

p1

p2

28 / 48

Decidability results for ET-opacity

∃-ET-opaque weakly ET-
opaque

fully ET-
opaque

Decision TA

√ √ √

p-emptiness
L/U-PTA

√
× ×

PTA × × ×

p-synthesis
L/U-PTA × × ×

PTA × × ×

▶ L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

▶ Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in [TOSEM22])

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)

29 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity
ET-opacity problems in TAs
ET-opacity problems in PTAs
Computing ET-opaque durations

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

30 / 48

Experiments: Computing ET-opaque durations

▶ Benchmark library + Library of Java programs 2

▶ Manually translated to PTAs
▶ User-input variables → (non-timing) parameters

▶ Algorithms

1. “Is the TA fully ET-opaque?”
2. “Synthesize parameter valuations and durations ensuring

∃-ET-opacity of a given PTA”

▶ Problems are undecidable → best-effort approach

▶ Algorithms based on parameter synthesis

2
https://github.com/Apogee-Research/STAC/

31 / 48

Experiments: Computing ET-opaque durations

▶ Benchmark library + Library of Java programs 2

▶ Manually translated to PTAs
▶ User-input variables → (non-timing) parameters

▶ Algorithms

1. “Is the TA fully ET-opaque?”
2. “Synthesize parameter valuations and durations ensuring

∃-ET-opacity of a given PTA”

▶ Problems are undecidable → best-effort approach

▶ Algorithms based on parameter synthesis

2
https://github.com/Apogee-Research/STAC/

31 / 48

Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48

Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48

Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d

finish

xabs = d

finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d

finish

xabs = d

finish

Formal proof of correctness: see [TOSEM22]

32 / 48

Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48

Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf , b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48

Applying reachability-synthesis

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥
(ℓf , b

′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

33 / 48

Experiments: (non-parametric) ET-opacity
Model Transf. PTA Result

Name |A| |X | |A| |X | |P| Time (s) Opaque?

Fig. 5, [VNN18] 1 1 2 3 3 0.02 (×)
Fig. 1b, [GMR07] 1 1 2 3 1 0.04 (×)
Fig. 2a, [GMR07] 1 1 2 3 1 0.05 (×)
Fig. 2b, [GMR07] 1 1 2 3 1 0.02 (×)

Web privacy problem [BCLR15] 1 2 2 4 1 0.07 (×)
Coffee 1 2 2 5 1 0.05

√

Fischer-HSRV02 3 2 6 5 1 5.83 (×)
STAC:1:n 2 3 6 0.12 (×)
STAC:1:v 2 3 6 0.11 ×
STAC:3:n 2 3 8 0.72

√

STAC:3:v 2 3 8 0.74 (×)
STAC:4:n 2 3 8 6.40 ×
STAC:4:v 2 3 8 265.52 ×
STAC:5:n 2 3 6 0.24

√

STAC:11A:v 2 3 8 47.77 (×)
STAC:11B:v 2 3 8 59.35 (×)
STAC:12c:v 2 3 8 18.44 ×
STAC:12e:n 2 3 8 0.58 ×
STAC:12e:v 2 3 8 1.10 (×)
STAC:14:n 2 3 8 22.34 (×)

√
= not vulnerable; (×) = vulnerable, can be repaired; × = vulnerable, cannot

be repaired
34 / 48

Experiments: (parametric) ∃-ET-opacity synthesis

Model Transf. PTA Result
Name |A| |X | |P| |A| |X | |P| Time (s) Constraint

Fig. 5, [VNN18] 1 1 0 2 3 4 0.02 K

Fig. 1b, [GMR07] 1 1 0 2 3 3 0.03 K

Fig. 2, [GMR07] 1 1 0 2 3 3 0.05 K

Web privacy problem [BCLR15] 1 2 2 2 4 3 0.07 K

Coffee 1 2 3 2 5 4 0.10 ⊤
Fischer-HSRV02 3 2 2 6 5 3 7.53 K

STAC:3:v 2 2 3 9 0.93 K

K = some valuations make the system non-vulnerable;

⊤ = all valuations make the system non-vulnerable

35 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

36 / 48

Expiring ET-opacity

▶ How to deal with outdated secrets?
e. g., cache values, status of the memory, . . .

Idea

The secret can expire: beyond a certain duration, knowing the
secret is useless to the attacker (e. g., a cache value) [Amm+21]

37 / 48

Expiring ET-opacity

Assumption

Knowing an expired secret is equivalent to not knowing a secret

Secret runs Non-secret runs

ET-opacity
Runs visiting the private lo-
cation

Runs not visiting the pri-
vate location

(= private runs) (= public runs)

expiring-ET-opacity
Private runs with ℓpriv visit
≤ ∆ before the system
completion

(i) Public runs and
(ii) Private runs with ℓpriv
visit > ∆ before the system
completion

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

38 / 48

Three levels of

expiring

ET-opacity

Existential (∃)

expiring

private durations ∩ public durations ̸= ∅

Weak

expiring

private durations ⊆ public durations

Full

expiring

private durations = public durations

39 / 48

Three levels of expiring ET-opacity

Existential (∃) expiring
secret durations ∩ non-secret durations ̸= ∅

Weak expiring

secret durations ⊆ non-secret durations

Full expiring

secret durations = non-secret durations

39 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non-secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

40 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non-secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

40 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3,p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness

(p+∆)-Synthesis

p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

41 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3,p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis

p1 > 3 ∨ ∆ = 0
∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

41 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3,p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3

p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)
∨(p2 = 3))

41 / 48

Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3,p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness ×(∃v) ×(∃v)
(p+∆)-Synthesis p1 > 3 ∨ ∆ = 0

∨ p2 ≤ 3 ∨ p1 +∆ <= 3
p1 = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ p2 ≤ ∆+ 3)

∨(p2 = 3))

41 / 48

Decidability results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness
L/U-PTA × ×

PTA × ×

(p +∆)-synthesis
L/U-PTA × ×

PTA × ×

▶ ∃-expiring ET-opacity was left as a future work.

▶ L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

▶ Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in [ICECCS23])

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

42 / 48

Decidability results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness
L/U-PTA × ×

PTA × ×

(p +∆)-synthesis
L/U-PTA × ×

PTA × ×

▶ ∃-expiring ET-opacity was left as a future work.

▶ L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

▶ Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in [ICECCS23])

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

42 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

43 / 48

Untimed control

ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3

u

x > 4
d

x← 0

x = 5
e

f
x← 0

−→ ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

a

x > 2
f

u

1 ≤ x ≤ 3

u

f
x← 0

▶ Restrict the behavior of the system to ensure ET-opacity
▶ Development of an open-source tool strategFTO (≈ 1200

lines of code, Java)
▶ Enumeration of transition sets

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022

44 / 48

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

45 / 48

Conclusion

Context: vulnerability by timing-attacks

▶ Attacker model: observability of the global execution time

▶ Goal: avoid leaking information on whether some discrete
state has been visited

Several problems studied for timed automata

, Mostly decidable

Extension to parametric timed automata

/ Quickly undecidable

, One procedure for one synthesis problem

▶ Toolkit: IMITATOR

▶ Benchmarks: concurrent systems and Java programs

46 / 48

Perspectives

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

47 / 48

Perspectives

Theoretical perspectives

▶ Existential version of expiring ET-opacity

▶ ∆-synthesis for full expiring ET-opacity

Algorihtmic perspectives

▶ Synthesis for weak and full ET-opacity

▶ Synthesis for expiring problems

Automatic translation of programs to PTAs

▶ Our translation required non-trivial creativity
→ Preliminary translation with Petri nets including cache system

48 / 48

References I

[AD94] Rajeev Alur and David L. Dill. “A theory of timed
automata”. In: TCS 126 (Apr. 1994).

[AHV93] Rajeev Alur, Thomas A. Henzinger, and
Moshe Y. Vardi. “Parametric real-time reasoning”.
In: STOC (1993). ACM, 1993.

[Amm+21] Ikhlass Ammar, Yamen El Touati, Moez Yeddes,
and John Mullins. “Bounded opacity for timed
systems”. In: Journal of Information Security and
Applications 61 (Sept. 2021).

[AS19] Étienne André and Jun Sun. “Parametric Timed
Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (2019). LNCS. Springer, 2019.

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux,
and Dylan Marinho. “strategFTO: Untimed control
for timed opacity”. In: FTSCS (2022). ACM, 2022.

49 / 48

References II

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and
Frits W. Vaandrager. “Linear parametric model
checking of timed automata”. In: Journal of Logic
and Algebraic Programming 52-53 (2002).

[ICECCS23] Étienne André, Engel Lefaucheux, and
Dylan Marinho. “Expiring opacity problems in
parametric timed automata”. In: ICECCS (2023).
To appear. Springer, 2023.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and
Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM
TOSEM 31 (2022).

50 / 48

Licensing

51 / 48

Source of the graphics used I

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien exterminate
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
License: public domain

Title: Piratey, vector version
Author: Gustavb
Source: https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg
License: CC by-sa

Title: Expired
Author: RRZEicons
Source: https://commons.wikimedia.org/wiki/File:Expired.svg
License: CC by-sa

52 / 48

https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg
https://commons.wikimedia.org/wiki/File:Expired.svg

License of this document

This presentation can be published, reused and modified under the
terms of the license Creative Commons Attribution-ShareAlike
4.0 Unported (CC BY-SA 4.0)

(LATEX source available on demand)

Authors: Étienne André and Dylan Marinho

creativecommons.org/licenses/by-sa/4.0/

53 / 48

https://lipn.univ-paris13.fr/~andre/
https://dylan-marinho.gitlab.io
https://creativecommons.org/licenses/by-sa/4.0/

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of ∃-ET-opacity p-emptiness)

Given P, the mere existence of a parameter valuation v s. t. v(P)
∃-ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

ℓ0 ℓfPℓ0
′ ℓpriv

ℓpub ℓf
′

Remark: L/U-PTA is a decidable subclass

54 / 48

	Introduction
	General context
	Timing attacks
	The methodology

	Preliminaries: (Parametric) Timed model checking
	Timed model checking and Timed automata
	Parametric timed model checking and Parametric timed automata

	Execution-time opacity
	Introduction
	ET-opacity problems in TAs
	ET-opacity problems in PTAs
	Computing ET-opaque durations

	Expiring ET-opacity problems
	Untimed control
	Conclusion & Perspectives

