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Motivation

▶ Real-time systems:
▶ Not only the functional correctness but also the time to answer

is important

▶ Failures (in correctness or timing) may result in dramatic
consequences
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General context: side-channel attacks

▶ Threats to a system using non-algorithmic weaknesses

▶ Cache attacks
▶ Electromagnetic attacks
▶ Power attacks
▶ Acoustic attacks
▶ Timing attacks
▶ Temperature attacks
▶ etc.

▶ Example
▶ Number of pizzas (and order time) ordered by the white house

prior to major war announcements
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A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) − 1 do
4 i f pwd [ i ] ̸= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt
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Timing attacks

▶ Principle: deduce private information from timing data
(execution time)

Issues:

▶ May depend on the implementation (or, even worse, be
introduced by the compiler)

▶ A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

; Non-trivial problem
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Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees → formal methods

▶ Various methods:
▶ Abstract interpretation
▶ Static analysis
▶ Model checking
▶ Theorem proving
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Methodology

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking

Outline

1. Preliminaries: Timed model checking

2. Execution-time opacity
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Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives
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Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=

is unreachable
A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No
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Timed automaton (TA)
[AD94]

▶ Finite state automaton (sets of locations)

and actions) augmented with a

set X of clocks

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

idle

adding sugar

delivering coffee
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Parametric

Timed Automaton (PTA)
[AHV93]

▶ Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters
▶ Unknown constants compared to a clock in guards and

invariants

y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y =5
cup!

x ≥ 1
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x← 0

y =8
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Parametric

timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes

if. . .

No

Counterexample
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Parametric timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|=
is unreachable

A property to be satisfied

▶ Question: for what values of the parameters does the model
of the system satisfy the property?

Yes if. . .

No

delay

period

2× delay > 20.46× period

14 / 48



Valuation of a PTA = TA

▶ Given a PTA P and a parameter valuation v,
v(P) is the TA where each parameter p is valuated by v(p)

v

 y ≤ p2

y ≤ 8
press?
x ← 0
y ← 0

y =p2
cup!

x ≥ p1
press?

x← 0

y =p3
coffee!

 = y ≤ 5

y ≤ 8
press?
x ← 0
y ← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

with v :


p1 → 1
p2 → 5
p3 → 8
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Execution-time opacity

▶ How to detect timing-leak vulnerabilities?

Goal

▶ Propose a formalization of the private information and
attacker model

▶ Check whether a model is secure or not

Contributions

▶ ET-opacity definition, decidability results and experiments [TOSEM22]

▶ Expiring ET-opacity definition and decidability results [ICECCS23]

▶ Untimed control [FTSCS22]
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Our attacker model

Attacker capabilities

▶ Has access to the model (white box)

▶ Can only observe the total execution time

Attacker goal

▶ Wants to deduce some private information based on these
observations
→ visit of a private location
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Formalization

Hypotheses: [AS19][TOSEM22]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0

ℓpriv

ℓf

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs
to ℓf of duration d

1. one visiting ℓpriv

2. one not visiting ℓpriv

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)
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Three levels of ET-opacity

Existential (∃)
There exist a duration d and two runs of duration d,

one visiting ℓpriv ,
one not visiting ℓpriv

Weak

For all durations d,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all durations d,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv
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Three levels of ET-opacity

Existential (∃)
private durations ∩ public durations ̸= ∅

Weak

private durations ⊆ public durations

Full

private durations = public durations

21 / 48



Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ private durations are [1, 2.5]
public durations are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque
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∃
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full

∃
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√
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Two classes of parametric problems

p-Emptiness problem

Decide the emptiness of the set of parameter valuations v
s. t. v(P) is ET-opaque

p-Synthesis problem

Synthesize the set of parameter valuations v
s. t. v(P) is ET-opaque
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Decidability results for ET-opacity

∃-ET-opaque weakly ET-
opaque

fully ET-
opaque

Decision TA

√ √ √

p-emptiness
L/U-PTA

√
× ×

PTA × × ×

p-synthesis
L/U-PTA × × ×

PTA × × ×

▶ L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

▶ Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in [TOSEM22])

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: ACM TOSEM (2022)
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Experiments: Computing ET-opaque durations

▶ Benchmark library + Library of Java programs 2

▶ Manually translated to PTAs
▶ User-input variables → (non-timing) parameters

▶ Algorithms

1. “Is the TA fully ET-opaque?”
2. “Synthesize parameter valuations and durations ensuring

∃-ET-opacity of a given PTA”

▶ Problems are undecidable → best-effort approach

▶ Algorithms based on parameter synthesis

2
https://github.com/Apogee-Research/STAC/

31 / 48



Experiments: Computing ET-opaque durations

▶ Benchmark library + Library of Java programs 2

▶ Manually translated to PTAs
▶ User-input variables → (non-timing) parameters

▶ Algorithms

1. “Is the TA fully ET-opaque?”
2. “Synthesize parameter valuations and durations ensuring

∃-ET-opacity of a given PTA”

▶ Problems are undecidable → best-effort approach

▶ Algorithms based on parameter synthesis

2
https://github.com/Apogee-Research/STAC/

31 / 48



Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48



Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48



Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d

finish

xabs = d

finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d

finish

xabs = d

finish

Formal proof of correctness: see [TOSEM22]

32 / 48



Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf ,b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48



Our transformation of the PTA in 4 overlays

1. Add a Boolean flag b

2. Add a synchronization action finish

3. Measure the (parametric) duration to ℓf

4. Perform self-composition
(a synchronization on shared actions of the PTA with a copy of itself)

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1

b← true

x ≥ p2

∧xabs = d
finish

xabs = d
finish

∥

(ℓf , b
′ = false)

ℓ0 ℓpriv

ℓf

x′ ≤ 3 x′ ≤ 3
x′ ≥ p1

b′ ← true

x′ ≥ p2

∧xabs = d
finish

xabs = d
finish

Formal proof of correctness: see [TOSEM22]

32 / 48



Applying reachability-synthesis

Synthesize all parameter valuations (including d) with a particular
reachable state:

▶ ℓf with b = true

▶ ℓf with b′ = false

(ℓf ,b = true)

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
x ≥ p1
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∧xabs = d
finish

xabs = d
finish

∥
(ℓf , b

′ = false)
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x′ ≤ 3 x′ ≤ 3
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∧xabs = d
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Formal proof of correctness: see [TOSEM22]
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Experiments: (non-parametric) ET-opacity
Model Transf. PTA Result

Name |A| |X | |A| |X | |P| Time (s) Opaque?

Fig. 5, [VNN18] 1 1 2 3 3 0.02 (×)
Fig. 1b, [GMR07] 1 1 2 3 1 0.04 (×)
Fig. 2a, [GMR07] 1 1 2 3 1 0.05 (×)
Fig. 2b, [GMR07] 1 1 2 3 1 0.02 (×)

Web privacy problem [BCLR15] 1 2 2 4 1 0.07 (×)
Coffee 1 2 2 5 1 0.05

√

Fischer-HSRV02 3 2 6 5 1 5.83 (×)
STAC:1:n 2 3 6 0.12 (×)
STAC:1:v 2 3 6 0.11 ×
STAC:3:n 2 3 8 0.72

√

STAC:3:v 2 3 8 0.74 (×)
STAC:4:n 2 3 8 6.40 ×
STAC:4:v 2 3 8 265.52 ×
STAC:5:n 2 3 6 0.24

√

STAC:11A:v 2 3 8 47.77 (×)
STAC:11B:v 2 3 8 59.35 (×)
STAC:12c:v 2 3 8 18.44 ×
STAC:12e:n 2 3 8 0.58 ×
STAC:12e:v 2 3 8 1.10 (×)
STAC:14:n 2 3 8 22.34 (×)

√
= not vulnerable; (×) = vulnerable, can be repaired; × = vulnerable, cannot

be repaired
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Experiments: (parametric) ∃-ET-opacity synthesis

Model Transf. PTA Result
Name |A| |X | |P| |A| |X | |P| Time (s) Constraint

Fig. 5, [VNN18] 1 1 0 2 3 4 0.02 K

Fig. 1b, [GMR07] 1 1 0 2 3 3 0.03 K

Fig. 2, [GMR07] 1 1 0 2 3 3 0.05 K

Web privacy problem [BCLR15] 1 2 2 2 4 3 0.07 K

Coffee 1 2 3 2 5 4 0.10 ⊤
Fischer-HSRV02 3 2 2 6 5 3 7.53 K

STAC:3:v 2 2 3 9 0.93 K

K = some valuations make the system non-vulnerable;

⊤ = all valuations make the system non-vulnerable
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Expiring ET-opacity

▶ How to deal with outdated secrets?
e. g., cache values, status of the memory, . . .

Idea

The secret can expire: beyond a certain duration, knowing the
secret is useless to the attacker (e. g., a cache value) [Amm+21]
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Expiring ET-opacity

Assumption

Knowing an expired secret is equivalent to not knowing a secret

Secret runs Non-secret runs

ET-opacity
Runs visiting the private lo-
cation

Runs not visiting the pri-
vate location

(= private runs) (= public runs)

expiring-ET-opacity
Private runs with ℓpriv visit
≤ ∆ before the system
completion

(i) Public runs and
(ii) Private runs with ℓpriv
visit > ∆ before the system
completion

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023

38 / 48



Three levels of

expiring

ET-opacity

Existential (∃)

expiring

private durations ∩ public durations ̸= ∅

Weak

expiring

private durations ⊆ public durations

Full

expiring

private durations = public durations
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Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non-secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×
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Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b

a

c

if p1 ≤ 3 otherwise

Secret [p1,min(∆ + 3,p2)] ∅
Non-secret (p1 +∆, p2] ∪ [0, 3] ∅ ∪ [0, 3]

ET-opacity notion Weak Full
(p+∆)-Emptiness

(p+∆)-Synthesis

p1 > 3 ∨ ∆ = 0
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Decidability results for expiring-ET-opacity

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

√ √

∆-synthesis
√

?

(p +∆)-emptiness
L/U-PTA × ×

PTA × ×

(p +∆)-synthesis
L/U-PTA × ×

PTA × ×

▶ ∃-expiring ET-opacity was left as a future work.

▶ L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either
compared to clocks as upperbound, or as lower bound) [Hun+02]

▶ Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs).
(see formal proofs in [ICECCS23])

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (2023). To appear. Springer, 2023
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Untimed control

ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

x = 2
b

x← 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3

u

x > 4
d

x← 0

x = 5
e

f
x← 0

−→ ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

a

x > 2
f

u

1 ≤ x ≤ 3

u

f
x← 0

▶ Restrict the behavior of the system to ensure ET-opacity
▶ Development of an open-source tool strategFTO (≈ 1200

lines of code, Java)
▶ Enumeration of transition sets

[FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: FTSCS (2022). ACM, 2022
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Conclusion

Context: vulnerability by timing-attacks

▶ Attacker model: observability of the global execution time

▶ Goal: avoid leaking information on whether some discrete
state has been visited

Several problems studied for timed automata

, Mostly decidable

Extension to parametric timed automata

/ Quickly undecidable

, One procedure for one synthesis problem

▶ Toolkit: IMITATOR

▶ Benchmarks: concurrent systems and Java programs
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Perspectives

A program

A specification

“The program
must be secure”

A model

ℓ0 ℓ1 ℓ2

y ≤ 5

y ≤ 8
press?
x← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x← 0

y = 8
coffee!

A property

“Is the pro-
gram secure?”

Model checker

?

|=

Inputs

Yes

No

Output

Model checking
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Perspectives

Theoretical perspectives

▶ Existential version of expiring ET-opacity

▶ ∆-synthesis for full expiring ET-opacity

Algorihtmic perspectives

▶ Synthesis for weak and full ET-opacity

▶ Synthesis for expiring problems

Automatic translation of programs to PTAs

▶ Our translation required non-trivial creativity
→ Preliminary translation with Petri nets including cache system

48 / 48
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ET-opacity synthesis is (very) difficult

Theorem (Undecidability of ∃-ET-opacity p-emptiness)

Given P, the mere existence of a parameter valuation v s. t. v(P)
∃-ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

ℓ0 ℓfPℓ0
′ ℓpriv

ℓpub ℓf
′

Remark: L/U-PTA is a decidable subclass
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