

ICS-CoE

April 10th, 2024 Palaiseau, France

Execution-time opacity problems in (parametric) timed automata

Dylan Marinho, PhD

Télécom SudParis, Institut Polytechnique de Paris

Based on join works with Étienne André, Shapagat Bolat, Engel Lefaucheux, Didier Lime, and Sun Jun

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015) and the ANR research program BisoUS (ANR-22-CE48-0012).

Motivation

► Real-time systems:

Not only the functional correctness but also the time to answer is important

Motivation

Critical Real-time systems:

- Not only the functional correctness but also the time to answer is important
- Failures (in correctness or timing) may result in dramatic consequences

Motivation

Critical Real-time systems:

- Not only the functional correctness but also the time to answer is important
- Failures (in correctness or timing) may result in dramatic consequences

Threats to a system using non-algorithmic weaknesses

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

¹http://home.xnet.com/~warinner/pizzacites.html

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

¹http://home.xnet.com/~warinner/pizzacites.html

pwd	с	h	i	С	k	е	n
attempt	с	h	е	е	s	е	

Execution time:

Execution time: ϵ

Execution time: $\epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

Timing attacks

 Principle: deduce private information from timing data (execution time)

Issues:

- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency

 \rightsquigarrow Non-trivial problem

Detection

Need to detect timing-leak vulnerabilities

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees \rightarrow formal methods

Various methods:

- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

Detection

Need to detect timing-leak vulnerabilities

We want formal guarantees \rightarrow formal methods

Various methods:

- Abstract interpretation
- Static analysis
- Model checking
- Theorem proving

A specification "The program must be secure"

Outline Preliminaries: Timed model checking Execution-time opacity

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric timed automata

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Timed model checking

A model of the system

is unreachable A property to be satisfied

Timed model checking

Question: does the model of the system satisfy the property?

Timed model checking

is unreachable A property to be satisfied

A model of the system

Question: does the model of the system satisfy the property?

Yes

No

Counterexample

sfy the property?

[AD94]

Finite state automaton (sets of locations)

Finite state automaton (sets of locations and actions)

idle adding sugar delivering coffee

11 / 48

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

idle adding sugar delivering coffee

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

Features

Location invariant: property to be verified to stay at a location

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition
- Clock reset: some of the clocks can be set to 0 along transitions

Outline

Preliminaries: (Parametric) Timed model checking Timed model checking and Timed automata Parametric timed model checking and Parametric timed automata

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

[AHV93]

Parametric Timed Automaton (PTA)

[AHV93]

- Timed automaton (sets of locations, actions and clocks) augmented with a set *P* of parameters
 - Unknown constants compared to a clock in guards and invariants

timed model checking

Question: does the model of the system satisfy the property?

Yes

No

Counterexample

Parametric timed model checking

Question: for what values of the parameters does the model of the system satisfy the property?

Yes if...

 $2 \times \text{delay} > 20.46 \times \text{period}$

Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)

Valuation of a PTA = TA

Given a PTA P and a parameter valuation v,
 v(P) is the TA where each parameter p is valuated by v(p)

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Execution-time opacity

How to detect timing-leak vulnerabilities?

Execution-time opacity

How to detect timing-leak vulnerabilities?

Execution-time opacity

How to detect timing-leak vulnerabilities?

Goal

 Propose a formalization of the private information and attacker model

Check whether a model is secure or not

Contributions

	ET-opacity	definition,	decidability	results and	experiments	[TOSEM22]
--	------------	-------------	--------------	-------------	-------------	-----------

- Expiring ET-opacity definition and decidability results [ICECCS23]
- ► Untimed control [FTSCS22]

Our attacker model

Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time

Our attacker model

Attacker capabilities

- Has access to the model (white box)
- Can only observe the total execution time

Attacker goal

- Wants to deduce some private information based on these observations
 - \rightarrow visit of a private location

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque duration

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Formalization

Hypotheses:

[AS19][TOSEM22]

- \blacktriangleright A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

Formalization

Hypotheses:

[AS19][TOSEM22]

- \blacktriangleright A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs to ℓ_f of duration d

- 1. one visiting ℓ_{priv}
- 2. one *not* visiting ℓ_{priv}

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

Existential (\exists)

There exist a duration d and two runs of duration d, one visiting ℓ_{priv} , one not visiting ℓ_{priv}

Existential (\exists)

private durations \cap public durations $\neq \emptyset$

Weak

For all durations d, There exists a run of duration d visiting ℓ_{priv} \Rightarrow There exists a run of duration d not visiting ℓ_{priv}

Existential (\exists)

Full

Weak

private durations = public durations

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

visiting ℓ_{priv}

 $\rightarrow \ell_0$

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d = 2:

• There exist $(at \ least)$ two runs of duration d for all durations $d \in [1, 2.5]$

The system is \exists -ET-opaque

• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

 private durations are [1, 2.5] public durations are [0, 3]

• There exist $(at \ least)$ two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

• There exist $(at \ least)$ two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5] public durations are [0, 3]
- private durations \subseteq public durations

The system is weakly ET-opaque

• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5] public durations are [0, 3]
- private durations \subseteq public durations

The system is weakly ET-opaque

• private durations \neq public durations

• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
 private durations C public durations
- private durations \subseteq public durations

The system is weakly ET-opaque

• private durations \neq public durations

The system is *not* fully ET-opaque

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque durations

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

ET-opacity notion	Private	Public	Answer
p ₁ =	$1 \wedge \mathbf{p}_2 = 2$	2.5	
Ξ			
weak	[1, 2.5]	[0, 3]	
full			×

ET-opacity notion	Private	Public	Answer
$p_1 =$	$1 \wedge p_2 = 2$	2.5	
∃ weak	[1, 2.5]	[0,3]	
тин p1 =	$= 0 \wedge p_2 =$	3	X
∃ weak full	[0,3]	[0, 3]	

Two classes of parametric problems

p-Emptiness problem

Decide the emptiness of the set of parameter valuations v s.t. $v(\mathcal{P})$ is ET-opaque

p-Synthesis problem

Synthesize the set of parameter valuations v s. t. $v(\mathcal{P})$ is ET-opaque

ET-opacity notion	Ξ	Weak	Full
p-Emptiness			
p-Synthesis			

Ξ	Weak	Full
×(∃v)	×(∃v)	×(∃v)
	E ×(JŸ)	∃ Weak ×(∃v) ×(∃v)

ET-opacity notion	Э	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \leq \mathbf{p_1} \leq 3$		
	$\wedge \ p_1 \leq p_2$		

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \le p_1 \le 3$	$0 \leq \mathbf{p}_1 \wedge \mathbf{p}_2 \leq 3$	
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	P2	P2	
	- P1	P1	

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \leq \mathbf{p}_1 \leq 3$	$0 \leq \mathbf{p}_1 \wedge \mathbf{p}_2 \leq 3$	$\mathbf{p_1}=0\wedge\mathbf{p_2}=3$
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	p2	P2	p2

Decidability results for ET-opacity

		∃-ET-opaque	weakly ET-	fully ET-
			opaque	opaque
Decision	ТА	\checkmark	\checkmark	\checkmark
n emptiness	L/U-PTA	\checkmark	×	×
<i>p</i> -emptiliess	ΡΤΑ	×	×	×
n synthosis	L/U-PTA	×	×	×
ρ -synthesis	ΡΤΑ	×	×	×

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in [TOSEM22])

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

ET-opacity problems in TAs ET-opacity problems in PTAs Computing ET-opaque durations

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Experiments: Computing ET-opaque durations

- Benchmark library + Library of Java programs²
 - Manually translated to PTAs
 - ► User-input variables → (non-timing) parameters

Algorithms

- 1. "Is the TA fully ET-opaque?"
- 2. "Synthesize parameter valuations and durations ensuring ∃-ET-opacity of a given PTA"

²https://github.com/Apogee-Research/STAC/

Experiments: Computing ET-opaque durations

- Benchmark library + Library of Java programs²
 - Manually translated to PTAs
 - ► User-input variables → (non-timing) parameters

Algorithms

- 1. "Is the TA fully ET-opaque?"
- 2. "Synthesize parameter valuations and durations ensuring ∃-ET-opacity of a given PTA"
- $\blacktriangleright \text{ Problems are undecidable} \rightarrow \text{best-effort approach}$
- Algorithms based on parameter synthesis

²https://github.com/Apogee-Research/STAC/

1. Add a Boolean flag b

- 1. Add a Boolean flag b
- 2. Add a synchronization action finish

- 1. Add a Boolean flag ${\bf b}$
- 2. Add a synchronization action finish
- 3. Measure the (parametric) duration to $\ell_{\rm f}$

- 1. Add a Boolean flag b
- 2. Add a synchronization action finish
- 3. Measure the (parametric) duration to $\ell_{\rm f}$
- 4. Perform self-composition

(a synchronization on shared actions of the PTA with a copy of itself)

Applying reachability-synthesis

Synthesize all parameter valuations (including d) with a particular reachable state:

$$\blacktriangleright$$
 $\ell_{\rm f}$ with $b =$ true

•
$$\ell_{\rm f}$$
 with $b' = {\tt false}$

 $(\ell_{\rm f}, {\rm b} = {\tt true}) \qquad \qquad (\ell_{\rm f}, {\rm b}' = {\tt false})$

Formal proof of correctness: see [TOSEM22]

Experiments: ((non-parametric)	ET-opacity
Experimentes.	non parametric	

Model	Model			nsf.	ΡΤΑ	Re	sult
Name	$ \mathcal{A} $	X	$ \mathcal{A} $	X	$ \mathbb{P} $	Time (s)	Opaque?
Fig. 5, [VNN18]	1	1	2	3	3	0.02	(×)
Fig. 1b, [GMR07]	1	1	2	3	1	0.04	(×)
Fig. 2a, [GMR07]	1	1	2	3	1	0.05	(×)
Fig. 2b, [GMR07]	1	1	2	3	1	0.02	(×)
Web privacy problem [BCLR15]	1	2	2	4	1	0.07	(×)
Coffee	1	2	2	5	1	0.05	\checkmark
Fischer-HSRV02	3	2	6	5	1	5.83	(×)
STAC:1:n			2	3	6	0.12	(×)
STAC:1:v			2	3	6	0.11	×
STAC:3:n			2	3	8	0.72	\checkmark
STAC:3:v			2	3	8	0.74	(×)
STAC:4:n			2	3	8	6.40	×
STAC:4:v			2	3	8	265.52	×
STAC:5:n			2	3	6	0.24	\checkmark
STAC:11A:v			2	3	8	47.77	(×)
STAC:11B:v			2	3	8	59.35	(×)
STAC:12c:v			2	3	8	18.44	×
STAC:12e:n			2	3	8	0.58	×
STAC:12e:v			2	3	8	1.10	(×)
STAC:14:n			2	3	8	22.34	(×)

 $\surd =$ not vulnerable; (\times) = vulnerable, can be repaired; $\times =$ vulnerable, cannot be repaired

Experiments: (parametric) ∃-ET-opacity synthesis

Model			Transf. PTA			Result		
Name	$ \mathcal{A} $	X	$ \mathbb{P} $	$ \mathcal{A} $	X	$ \mathbb{P} $	Time (s)	Constraint
Fig. 5, [VNN18]	1	1	0	2	3	4	0.02	K
Fig. 1b, [GMR07]	1	1	0	2	3	3	0.03	K
Fig. 2, [GMR07]	1	1	0	2	3	3	0.05	K
Web privacy problem [BCLR15]	1	2	2	2	4	3	0.07	K
Coffee	1	2	3	2	5	4	0.10	Т
Fischer-HSRV02	3	2	2	6	5	3	7.53	K
STAC:3:v			2	2	3	9	0.93	K

- K = some valuations make the system non-vulnerable;
- $\mathsf{T} = \mathsf{all}$ valuations make the system non-vulnerable

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Expiring ET-opacity

How to deal with outdated secrets? e.g., cache values, status of the memory, ...

Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value) [Amm+21]

Expiring ET-opacity

Assumption

Knowing an expired secret is equivalent to not knowing a secret

	Secret runs	Non-secret runs
FT opacity	Runs visiting the private lo-	Runs not visiting the pri-
	cation	vate location
	(= private runs)	(= public runs)
ovniring ET onacity	Private runs with ℓ_{priv} visit	(i) Public runs and
expiring-Lit-opacity	$\leq \Delta$ before the system	(ii) Private runs with ℓ_{priv}
	completion	visit > Δ before the system
		completion

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

Three levels of

ET-opacity

private durations \subseteq public durations

 ${\sf private \ durations} = {\sf public \ durations}$

Three levels of expiring ET-opacity

Existential (\exists) expiring

secret durations \cap non-secret durations $\neq \emptyset$

Weak expiring

secret durations \subseteq non-secret durations

Full expiring

secret durations = non-secret durations

ET-opac	ity notion	Secret	Non-secret	Answer
	Ξ			
	weak	[1, 2.5]	[0, 3]	
	full			×
	∃-exp.			\checkmark
$\Delta = 1$	weak-exp.	[1, 2.5]	$(2, 2.5] \cup [0, 3]$	
	full-exp.			×

ET-opaci	ty notion	Secret	Non-secret	Answer
∃ weak		[1,2.5]	[0, 3]	
	full			×
$\Delta = 1$	∃-exp.			
	weak-exp.	[1, 2.5]	$(2, 2.5] \cup [0, 3]$	
	full-exp.			×
$\Delta = 1.25$	∃-exp.			
	weak-exp.	[1, 2.5]	(2.25, 2.5] ∪ [0, 3]	
	full-exp.			×

Secret	$[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p}_1+\Delta,\mathbf{p}_2]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness		
(p+ Δ)-Synthesis		

	If $\mathrm{p}_1 \leq 3$	otherwise
Secret	$[\mathbf{p}_1, min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness	×(∃v)	×(∃v)
(p+ Δ)-Synthesis		
Example

	If $\mathrm{p}_1 \leq 3$	otherwise
Secret	$[\mathbf{p_1}, min(\Delta + 3, \mathbf{p_2})]$	Ø
Non-secret	$(\underline{\mathbf{p}_1}+\Delta,\underline{\mathbf{p}_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness	×(∃v)	×(∃v)
(p+∆)-Synthesis	$\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$	

Example

	if $\mathbf{p_1} \leq 3$	otherwise
Secret	$[\mathbf{p}_1, \min(\Delta + 3, \mathbf{p}_2)]$	Ø
Non-secret	$(\mathbf{p_1}+\Delta,\mathbf{p_2}]\cup[0,3]$	$\emptyset \cup [0,3]$

ET-opacity notion	Weak	Full
(p+∆)-Emptiness	×(∃v)	×(∃v)
(p+ Δ)-Synthesis	$\begin{array}{cccc} p_1 > 3 & \lor & \Delta = 0 \\ \lor & p_2 \leq 3 & \lor & p_1 + \Delta <= 3 \end{array}$	$\mathbf{p}_1 = 0 \wedge ((\Delta \leq 3 \land 3 \leq \mathbf{p}_2 \leq \Delta + 3) \ ee (\mathbf{p}_2 = 3) \)$

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ-emptiness Δ-synthesis	ТА		√ ?
$(n \perp \Lambda)$ emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptimess	РТА	×	×
$(n \perp \Lambda)$ synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	РТА	×	×

∃-expiring ET-opacity was left as a future work.

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ-emptiness Δ-synthesis	TA		√ ?
$(n \perp \Lambda)_{-\text{emptiness}}$	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	PTA	×	×
$(n \perp \Lambda)$ synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	PTA	×	×

- ∃-expiring ET-opacity was left as a future work.
- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in [ICECCS23])

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Untimed control

- Restrict the behavior of the system to ensure ET-opacity
- Development of an open-source tool strategFTO (~ 1200 lines of code, Java)

Enumeration of transition sets

[[]FTSCS22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: FTSCS (2022). ACM, 2022

Outline

Preliminaries: (Parametric) Timed model checking

Execution-time opacity

Expiring ET-opacity problems

Untimed control

Conclusion & Perspectives

Conclusion

Context: vulnerability by timing-attacks

Attacker model: observability of the global execution time

 Goal: avoid leaking information on whether some discrete state has been visited

Several problems studied for timed automata

Mostly decidable

Extension to parametric timed automata

- Quickly undecidable
- © One procedure for one synthesis problem
- Toolkit: IMITATOR
- Benchmarks: concurrent systems and Java programs

Perspectives

Perspectives

Theoretical perspectives

- Existential version of expiring ET-opacity
- Δ-synthesis for full expiring ET-opacity

Algorihtmic perspectives

- Synthesis for weak and full ET-opacity
- Synthesis for expiring problems

Automatic translation of programs to PTAs

- Our translation required non-trivial creativity
 - \rightarrow Preliminary translation with Petri nets including cache system

References I

[AD94]	Rajeev Alur and David L. Dill. "A theory of timed automata". In: <i>TCS</i> 126 (Apr. 1994).
[AHV93]	Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: <i>STOC</i> (1993). ACM, 1993.
[Amm+21]	Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. "Bounded opacity for timed systems". In: <i>Journal of Information Security and</i> <i>Applications</i> 61 (Sept. 2021).
[AS19]	Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: <i>ATVA</i> (2019). LNCS. Springer, 2019.
[FTSCS22]	Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. "strategFTO: Untimed control for timed opacity". In: <i>FTSCS</i> (2022). ACM, 2022.

References II

[Hun+02]

Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. "Linear parametric model checking of timed automata". In: *Journal of Logic and Algebraic Programming* 52-53 (2002).

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: *ICECCS* (2023). To appear. Springer, 2023.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM 31 (2022).

Licensing

Source of the graphics used I

Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien exterminate Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg License: public domain

Title: Piratey, vector version Author: Gustavb Source: https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg License: CC by-sa

Title: Expired Author: RRZEicons Source: https://commons.wikimedia.org/wiki/File:Expired.svg License: CC by-sa

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons **Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)**

(LTEX source available on demand)

Authors: Étienne André and Dylan Marinho

creativecommons.org/licenses/by-sa/4.0/

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of ∃-ET-opacity *p*-emptiness)

Given \mathcal{P} , the mere existence of a parameter valuation v s.t. $v(\mathcal{P})$ \exists -ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

Remark: L/U-PTA is a decidable subclass